AUTOMATIC AMPLITUDE ANALYZER 6500

(C) Marconi Instruments 1984

Printed in the UK

Part No. 46881-557V
Print code: J-6/87, MI 1.0 c

PREFACE

WARNINGS, CAUTIONS and NOTES
These terms have specific meanings in this manual:
WARNINGS contain information to prevent personal injury.
CAUTIONS contain information to prevent damage to the equipment.
Notes contain important general information.

BAZARD SYMBOLS

The meaning of hazard symbols appearing on the equipment is as follows:-
Symbol Nature of hazard Reference in manual

Δ	Dangerous voltages	Page iv
Δ	Static sensitive components	Page v

MANUAL AMENDMENT STATUS

Each page in this manual bears the date of its original issue or, if it has been amended, the date and status number of the amendment. Any changes subsequent to the latest amendment status are included on Manual Change sheets coded $\mathrm{Cl}, \mathrm{C} 2$ etc. at the front of the manual.

CONTENTS

Chapter Page

- Operating precautions iv
1 General information $1 / 1$
2 Installation 2/1
3-1 Operation 3-1/1
3-2 Applications 3-2/1
Appendix
A Characterization of non-Marconi Instruments detectors A/1
INDEX
ASSOCIATED PUBLICATIONS
Programing Manual, H 6500 Vol. lA (for GPIB operation)Service Manual, H 6500 Vol. 2

OPERATING PRECADTIONS

This product has been designed and tested in accordance with IEC Publication 348 - -Safety Requirements for Electronic Measuring Apparatus". To keep it in a safe condition and avoid risk of injury, the following precautions should be observed.

WARNING - ELECTRICAL HAZARDS

AC supply voltage. This equipment conforms with IEC Safety Class 1 , meaning that it is provided with a protective earthing lead. To maintain this protection the mains supply lead must always be connected to the source of supply via a socket with an earthing contact. Make sure that the earth protection is not interrupted if the supply is connected through an extension lead or an auto-transformer.

Before fitting a non-soldered plug to the mains lead cut off the tinned end of the wires, otherwise cold flowing of the solder could cause intermittent contact.

Do not use the equipment if it is likely that its protection has been impaired as a result of damage.

Primary fuses. Note that there is a supply fuse in both the live and neutral wires of the internal supply lead. If only one of these fuses should rupture, certain parts of the equipment could remain at mains potential.

To provide protection against breakdown of the internal supply lead, its connectors or filter (if fitted); a fuse should also be used in the live wire of the external supply lead (e.g. fitted into the mains plug). The fuse should have a continuous rating not exceeding 6A.

Make sure that only fuses with the required rated current and of the specified type are used for replacement. Do not short-circuit the fuse holder or use mended fuses.

Secondary fuses. Each secondary winding of transformer Tl (with the exception of +5 V and +12 V supply lines, which are adequately protected by the primary fuses $F 1$ and F2) is fused with a $250 \mathrm{~mA}, \mathrm{~A}-\mathrm{T}$ (250 milliamp time lag) fuse to provide added safety. These are situated on the secodary tag board within the instrument and can be accessed by removing the lower cover. See Service Manual.

Removal of covers. Disconnect the supply before removing the covers so as to avoid the risk of exposing high voltage parts. If any internal adjustment or servicing has to be carried out with the supply on, it must only be performed by a skilled person who is aware of the hazard involved.

Reraember that capacitors inside the equipment, including any supply filter capacitors, may still be charged after disconnection of the supply. Those connected to high voltage points should be discharged before carrying out work inside the equipment. This applies particularly to the EHT circuit for the cathode ray tube which must be discharged by repearedly shorting the final anode lead to chassis, or by using a bleed resistor. The residual charge on the CRT itself should also be removed by shorting the anode connector to chassis.

WARNING - OTHER HAZARDS

Parts of this equipment are made from metal pressings, therefore it should be handled with due care to avoid the risk of cuts or scratches.

Some of the components used in this equipment may include resins and other materials which give off toxic fumes if incinerated. Take appropriace precautions, therefore, in the disposal of these items.

Cathode ray tube. Be careful when exposing or handing the cathode ray tube, because of the risk of implosion and consequent scattering of glass fragments. Handling should only be carried out by experienced personnel and the use of a safety mask and gloves is recommended. A defective tube should be disposed of in a safe manner by an authorized waste contractor.

CAUTION - STATIC SENSITIVE COMPONENTS

This equipment contains static sensitive components which may be damaged by handling - refer to the service manual for handling precautions.

Chapter 1

GENERAL INFORMATION

FEATURES

The 6500 Automatic Amplitude Analyzer provides accurate scalar measurements quickly and efficiently. All relevant data is presented on the CRT display and the user is able to control any external sweeper utilizing an external ramp. When operated with Marconi Instruments 6300 seies Programable Sweep Generators, a complete scalar analysis system is formed, with intelligent interaction between the instruments to enhance system performance. Details of system operation are given in the appropriate 6300 series manual.

Microprocessor control allows a variety of measurements to be made simply and accurately. Three input channels A, B and R are available. Channels $A \& B$ are used as measurement channels and channel R as a reference, when required. The response on the channel R may be subtracted from channels A andor B, enabling measurements to be made independently of sweeper frequency responses and level variations. Three memories are provided to allow normalization or comparisions to be made between current and stored responses.

Measurements over a frequency range up to 126 GHz are possible depending on the detectors used. The detectors 6511,65126513 and 6514 allow measurements over the range 10 MHz to 40 GHz to be made.

The variable "brightiine" allows spot level measurements to be made anywhere within the frequency sweep range. The brightine level measurement and the corresponding frequency are displayed at the top and bottom of the display to 0.01 dB and 10 MHz (max.) resolution.

Display sensitivity (RANGE) can be set from 0.1 to $10.9 \mathrm{~dB}(\mathrm{~m})$ per division and the DATUM in the range $=99.9 \mathrm{~dB}(\mathrm{~m})$; both these parameters can be set independently on each channel. Alternatively, the AUTO facility will automatically select the best DATUM and RANGE to fit the trace(s) on the screen, relieving the user of the task of setting them manually. In addition, the required sweep width can be set anywhere within the sweepers range to a resolution of 10 MHz .

A facility for checking responses to specification is provided by the limit facility. HIGH and LOW limits may a be individually entered for the "A" and ' B ' channels. If any limit is exceeded during a sweep a warning message is generated on the alphanumeric display. Up to 9 sets of display parameters and limits may be stored and recalled thus allowing fast testing of devices to different specifications in different frequency bands.

The sweep can be stopped to permit photography or plotting. The PLOT facility uses an $X-Y$ plotter to plot the displayed traces and appropriate amplitude and frequency scaling.

All the 6500 keyboard functions can also be programmed by the general purpose interface bus (GPIB) if the interface is fitted. The interface is available in the 6500-001 version of the instrument, or as an accessory: 3964-650. This option also allows many facilites additional to those available from the front panel, which optimise the 6500° s use in an automatic test system.

Display Characteristics

The front panel provides an integral green phosphor CRT for display of all measurement information. The main display components are illustrated in Fig. 1-1 below.

```
S500 CRT DISPLAY
```


Fig.1-1 Display components

Alphanumerics The alphanumeric display provides a 40×25 character format for display of measurement parameters, user promts and other messages. The top line of the display is reserved for the title of the measurement, e.g.

```
Power
dB Relative
Gain/Loss (-Ref) (-A,R)
```

and also for displaying the selected nominal sweep speed. If the GPIB interface is fitted, this line can be replaced with any ticle up to 28 characters long.

Graticule The graticule lines on the frequency (X) axis are placed by the microprocessor at calculated intervals in order to provide standard frequency divisions in multiples of 1.2 or 5 . These will vary depending on the actual
sweep width selected. On sweep widths of 100 MHz or less these are not produced. On the amplitude (Y) axis there are ten fixed divisions which can be set to cover from 0.1 to $10.9 \mathrm{~dB}(\mathbb{m})$ per division.

Channel display Two line display memories (A, B) allow channels A and B to be displayed singly or simultaneously. When the reference channel (channel R) is displayed, its display information is held in display memory A. Each display memory contains measurement information for 422 horizontal measurement points, with a vertical resolution of 256 points. (Note that this apparently limited vertical resolution applies to to the characteristics of the displayed trace only - power resolution to 0.01 dB will be provided by the digital readout whatever the power scale). Each channel can be displayed in \quad line' or histogram form, although the R channel will be displayed in the same form as the A channel. When a sweep is started, the relevant channels will be switched on and cleared. On all subsequent sweeps each point will be updated as the measurement is made, thus providing a flicker-free display.

Brightline. The Brightine is a single moveable vertical line, which can be placed anywhere within the graticule. It is used for spot measurement purposes and the information relating to the amplitudes and its position on the frequency axis is displayed above and below the graticule respectively see Fig. 1-1.

Up to 8 markers can be placed on the screen using the Brightine. These are fixed in position and are for visual reference. When PLOT facility is enabled these appear as tick marks on the hard copy.

SPECIFICATION

Characteristic	Performance
Frequency range:	$0-126 \mathrm{GHz}$ (dependent on derector),
Dynamic range (All channels)	
Normal mode:	$66 \mathrm{~dB}(+16 \mathrm{dBm}$ to $-50 \mathrm{dBm})$.
Average mode:	71 dB (+16 dBm to 055 dBm).
Resolution (Brightline)	
Frequency:	Digital readout to 10 MHz .
Amplitude:	Digital readout to $0.01 \mathrm{~dB}(\mathrm{~m})$
Frequency Linearity:	Dependent on linearity of sweeper, See Ramp output linearity.
Markers:	Up to 8 on-screen markers with 10 MHz resolution.
Front panel selectable parameters	
Range:	```0.1 to 10.9 dB(m) division; 0.1 dB(m) increments.```
Datum:	$\pm 99.9 \mathrm{~dB}(\mathrm{~m}) ; 0.1 \mathrm{~dB}(\mathrm{~m})$ increments. Above parameters individually selectable on A, B and R channels.
High/Low Limits:	$\pm 99.99 \mathrm{~dB}(\mathrm{~m})$ individually selectable on A and B channels.
F1,F2 (Sweep range):	Selectable in range $0-126 \mathrm{GHz}$; (10 MHz resolution).
Start, Stop (Selected range):	Selectable within range Fl-F2; (10 MHz resolution).
$\Delta \mathrm{F}:$	Selectable symmetrically within range Fl-F2; Centre Frequency is Brightline position. (10 MHz Resolution)
Display format:	Line or histogram independently on A, B channels.
Sweep speed:	70 ms to 20 s nominal (10 alternative speeds).

Characteristics

$X-Y$ plotter functions:

Digital plotter functions:
Ramp output
Output 1 (Fixed range)

Range:

Linearity:
Resolution:
Output 2 (Variable)

Range:

Offset:
Linearity:
Resolution:
Plotter output
X output:
Y output:
Z output:

Channel memories:

Performance

Plot all.
Set pen bottom left.
Set pen top right.
Set pen to origin.
Draw axes.
Label axes.
Plot.
Set pen lift.
Set plot speed (9 alternatives).
Set live Y.
Available if GPIB interface fitted
$0-10 \mathrm{~V} \pm 10 \mathrm{mV}$.
$\pm 5 \mathrm{mV}$.
4096 points.

Adjustable from 1-20 V (approx.) using coarse and fine rear panel controls.

Bottom of range $=0 \mathrm{~V} \pm 10 \%$ of range (above). $\pm 0.25 \%$
4096 points.

See Ramp output 1: BNC socket. $0-10 \mathrm{~V} \pm 50 \mathrm{MV}:$ BNC socket. Open collector drive: BNC socket selectable high/low impedance for pen up/down.

At any time when valid data is available on the screen, the trace may be stored in any of the three memories. New data may be averaged with data already present. When invoked:-

A memory is subtracted from A trace.
B memory is subtracted from B trace.
R memory is subtracted from A and/or
B trace, as selected. Recall is
available on all memories.

Characteristics

CRT
Dimensions:
Phosphor:

Power requirements
Voltage:

Frequency:

Consumption:

Safety:
Radio Frequency interference:

Performance
$105 \mathrm{~mm} \times 135 \mathrm{~mm}$ used screen area. Green.

AC supply. Voltage ranges (switchable) $105-120 \mathrm{~V}$ or 210-250 V.

50 to 60 Hz .

120 VA maximum.

Meets IEC 348.

Conforms with he requirements of EEC Directive $76 / 889$ as to limits of RF interference.

Temperature range
Operational:
Full specification:
Conditions of storage and transport

Temperature:
Humidity:
Dimensions and weight (approximately)

Height:
Width:
Depth:
Weight:
Remote programming
$0-50{ }^{\circ} \mathrm{C}$.
$10^{0}-35^{\circ} \mathrm{C}$.
$-40{ }^{0} \mathrm{C}$ to $+70{ }^{\circ} \mathrm{C}$.
95% relative at $35^{\circ} \mathrm{C}$.

With handles and feer.

```
192 mm (7.5 in).
427 mm (16.8 in).
533 mm (21.2 in).
15.7 kg (34.5 lb).
```

A GPIB interface compatible with
IEEE-1978 is available either fitted (in the 6500-001) or as an optional accessory (3964-650). Another accessory (46883-408K) is available to allow conversion to IEC 625 format.

VERSIONS AND ACCESSORIES

Versions	Part no.
Automatic amplitude analyzer	6500
Automatic amplitude analyzer with GPIB	6500-001
Automatic amplitude analyzer with GPIB (400 Hz operation)	6500-002
Supplied accessories	
AC supply lead	23424-158H
Operating manual	46881-557V
Programming manual (supplied with 6500-001 and -002)	46881-558S
Detectors	
0.01 - 20 GHz , Type N male connector	6511
0.01 - 20 GHz , Type APC-7 connector	6512
$0.01-26.5 \mathrm{GHz}$, Type MPC 3.5 connector	6513
$26.5-40 \mathrm{GHz}$, Flange face UG $399 / \mathrm{U}$	6514
$0.01-18 \mathrm{GHz}$ Wiltron Autotester 560-97A 50,	
Type APC-7 connector, complete with adapter cable	59999-151W
0.01 - 26.5 GHz Wiltron Autotester 560-98 S50,	
Type APC-3.5 connector, complete with adapter cable	59999-152D

Optional accessories
Cables: 6510 Series detector extender cable, $5 \mathrm{~m} \quad 3964$-325
Detector adapter cable (BNC), 2 m 3964-294

6500-SMA cable, 2 m
3964-326
GPIB cable, 1 m 43129-139U
Interface cable to HP 8620C
3964-003
BNC-BNC cable, 1.5 m
43126-012S
$\mathrm{N}(\mathrm{m})-\mathrm{N}(\mathrm{m})$ cable, $1 \mathrm{~m} \quad 2200-277$

Measurement

accessories: High directivity coupler, $1-18 \mathrm{GHz}$ 2200-332
$\begin{array}{ll}\text { Power divider, } 2-18 \mathrm{GHz} & 2200-335\end{array}$
Microwave bridge set, $2-18 \mathrm{GHz}$,
36 dB directivity
2200-327
Waveguide coupler, 8.2 to $12.4 \mathrm{GHz}, 10 \mathrm{~dB}$ 6030A/10
Waveguide to N type transformer, 12.4 to $18 \mathrm{GHz} 6237 / 1$
Waveguide to N type transformer, 8 to $12.4 \mathrm{GHz} 6237 / 3$
Mechanical
accessories: Camera mount 3964-239
Camera hood 46883-267B
Rack mounting kit, 19 in. 3964-400
Service aids: Service manual 46881-559y
Field-replaceable detector modules 2716-006

GPIB interface 3964-650
Programming manual 46881-558S

Chap. 1
Page 7

Software support packages (SSPs)	Part no.
3.5 inch disc for use on external disc drive	3964-732
5.25 inch disc for use on 9826 and 9836 with internal disc drive	3964-733
Both SSPs are supplied with a comprehensive user manual:	46881-592V
ASSOCIATED EQUIPMENT	
Programmable Sweep Generator, $2-20 \mathrm{GHz}$	6310
Programmable Sweep Generator, 0.01-20 GHz	6311
6500-500 SCALAR NETWORK ANALYZER SYSTEMS	
All systems include:	
Automatic Amplitude Analyzer (with GPIB)	6500-001
GPIB Lead Assembly	43129-189U
BNC Connection Cable (Qty, 2)	43126-012S
Precision Adapter $N(m)-N(m)$	59999-161R
Earth connection kit	3964-334

he other components of the systems are detailed below:
$6310 \quad 6311 \quad 6511 \quad 6512 \quad 59999-151 \mathrm{~W}$

System

$6500-501$	1		3		
$6500-511$	1			3	
$6500-541$	1		1	2	
$6500-551$	1		2	1	
$6500-521$		1	3		1
$6500-522$		1	2	3	
$6500-531$	1		2	1	
$6500-532$		1	1	2	
$6500-561$		1	1	1	1
$6500-562$		1	1	1	

DETECTOR SPECIFICATIONS

Performance specifications for detectors at present available are given below. Additional information will be available as the range of detectors is expanded to suit user requirements.

6511 Detector

Frequency range :	0.01 to 20 GHz.
Dynamic range :	-55 to +16 dBm.

Power accuracy at 50 MHz at $23^{\circ} \mathrm{C} \pm 4^{\circ} \mathrm{C}$
(excluding errors due to
Return loss, Flatness and Source harmonics).

Maximum input power :

+26 dBm average, +30 dBm peak.

VSWR :

Detector flatness, -l0 dBm input power:

Connector :
$\pm 0.5 \mathrm{~dB}$ from 0.01 to 18 GHz
$+0.5 \mathrm{~dB},-1.0 \mathrm{~dB}$ from 18 to 20 GHz
Precision type N.

6512 Detector
The 6512 differs from the 6511 only in that it has an APC-7 connector.

Frequency range :
Dynamic range :
Power accuracy at 50 MHz : and $23^{\circ} \mathrm{C} \mp 40^{\circ} \mathrm{C}$
(excluding errors due to Return loss, Flatness and Source harmonics).

Maximum input power :
VSWR :

Detector flatness,
-10 dBm input power:

Connector

```
0.01 to 26.5 GHz
-50 to +16 dBm
```


+26 dBm average, +30 dBm peak.

$\pm 0.5 \mathrm{~dB}$ from 0.01 to 18 GHz $\pm 1.0 \mathrm{~dB}$ from 18 to 26.5 GHz

MPC 3.5 (m). Mates non-destructively with SMA and similar connectors.

Frequency range :
Dynamic range :
Power accuracy at 33 GHz at $21^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$:
(including errors due to VSWR, flatness and source harmonics.)

Maximum input power
VSWR :
Frequency response :

Operating temperature :

Input connector :

Output connector :

Dimensions and weight :
26.5 to 40 GHz .
-45 to +10 dBm , usable to +16 dBm .
$\pm 0.4 \mathrm{~dB}$ at 0 dBm .

+20 dBm average, +23 dBm peak.
2.5:1.
$\pm 0.3 \mathrm{~dB}$ at 33 GHz (-1 to -3 dB at band edges).

Included in frequency response diagram shown above.
$50^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$. (Do not use below dew point).

WG22
UG599/U.

Cable assembly to mate with 6500
input multiway.
Detector and waveguide extension.
Length : 119 mm .
Width : 25 mm.
Height : 21 mm .
Weight : 235 g .

Chapter 2

INSTALLATION

UNPACKING AND REPACKING

Retain the packing materials and the packing instruction note (if included) in case it is necessary to reship the instrument.

If the instrument is to be returned for servicing attach a label indicating the service required, type or model number (on rear label), serial number and your return address. Pack the instrument in accordance with the general instructions below or with the more detailed information in the packing instruction note.
(1) Place a pad in the bottom of the container.
(2) Place pads in the front and rear ends of the container with the plywood load spreader(s) facing inwards.
(3) Put the polythene cover over the instrument and place it in the container with the front handles and rear projections (where applicable) against the plywood load spreaders.
(4) Place pads in the two sides of the container with cushioning facing inwards.
(5) Place the top pad in position.
(6) Wrap the container in waterproof paper and secure with adhesive tape.
(7) Mark the package FRAGILE to encourage careful handling.

Note ...
If the original container or materials are not available, use a strong double-wall carton packed with a 7 to 10 cm layer of shock absorbing material around all sides of the instrument to hold it firmly. Protect the front panel controls with a plywood or cardboard load spreader; if the rear panel has guard plates or other projections a rear load spreader is also advisable.

MOUNTING ARRANGEAENTS

Excessive temperatures may affect the instrument's performance; therefore the plastic cover, if supplied, should be completely removed. Ensure that the fan air vent and other ventilation holes are not obstructed otherwise the maximum temperature specification is reduced resulting in imperfect operation. Avoid standing the instrument or associated detectors in the vicinity of large transformers or other possible magnetic fields or where X rays are present. If the source of such fields cannot be isolated Mumetal shields should be used to provide the necessary screening.

CONNECTING TO SUPPLY

Before connecting the instrument to the $A C$ supply check the position of the voltage selector with. The range selected can be seen on the side of the switch protection plate situated on the rear panel.

The instrument is no rmally dispatched selected to the $210-250 \mathrm{~V}$ range. To select the $105-120 \mathrm{~V}$ range remove the protection plate, switch ranges anc change the value of the $A C$ supply fuses to that shown below, reverse ad refit the protection plate.

> 115 V range $1.25 \mathrm{~A}-\mathrm{T}(1.25 \mathrm{amp}$ time lag)
> 230 V range $600 \mathrm{~mA}-\mathrm{T}(600 \mathrm{~mA}$ time lag)

Fuses are $20 \mathrm{~mm} \times 5 \mathrm{~mm}$ cartridge type.
The supplied $A C$ supply cable is fitted at one end with a female plug which mates with the $A C$ connector at the rear of the instrument. When fitting a supply plug ensure that conductors are connected as follows:

Earth	Green/Yellow
Neutral - Blue	
Live	- Brown

Any interruption of the earth conductor is liable to make the equipment dangerous.

When attaching the mains lead to a non-soldered plug it is recommended that the tinned ends of the lead are first cut off owing to the danger of cold flow resulting in intermittent connections.

SAFETY TESTING

Where safety tests on the mains input circuit are required, the following procedures can be applied. These comply with BS 4743 and IEC Publication 348. Tests are to be carried out as follows and in the order given, under ambient conditions, to ensure that mains input circuit components and wiring (including earthing) are safe.
(1) Earth lead continuity test from any part of the metal frame to the bared end of the flexible lead for the earth pin of the user's mains plug. Preferably a heavy current (about 25 A) should be applied for not more than 5 seconds.

Test limit: not greater than 0.5 ohm.
(2) 500 V DC insulation test from the mains circuit to earth.

Test limit: not less than 2 M ohm.
GPIB INTERFACE (3964-650)
The GPIB interface is an optional accessory and can easily be fitted by the user, details are given in the Programming manual, Vol. 1A.

RACK MOUNTING

The instrument may be mounted in a standard 19 inch rack using the kit Part No. 3964-400 available as an optional accessory. Fitting instructions are as follows:-
(1) Disconnect the mains supply.
(2) Remove both top and bottom outer covers, detach and discard front and rear feet on bottom cover.
(3) Fit rack brackets in front handles on side trim recesses using M4 x 16 panhead screws and washers, finally refit top and bottom covers.

Chapter 3-1

OPERATION

PREPARATION FOR USE

Providing the instrument is properly adjusted for AC supply voltage and is connected to an outlet socket with the correct fuses fitted, the instrument can be switched on.

At switch-on, a self test operation which checks the instrument's memory is applied. Should the instrument fail the self test, LOCAL and SHIFT LEDS will flash alternately and a message descriptive of the fault together with the CRT test pattern will remain on the screen (see Fig. 3-1). The last digit "n" in the code M6500/A15/IOn is the instrument's firmware issue number. If it is necessary to establish this number, a fault should be simulated by holding down any key other than MARKER as power is applied. The firmware issue can then be noted.

Fig. 3-1 Test pattern display and self test fault indication.

If the instrument is functioning correctly the LOCAL LED will remain on, the SHIFT LED OFF and a display of power on channel A will be shown. The fault messages are more fully explained in Chapter 5 of the Service Manual under "Processor faults (AC18) - Self test fault displays"

Note ...
If the power-on mode does not initiate the correct display or if the GPIB/LOCAL LED remains off; switch the power off, wait 10 seconds and repeat the switch on procedure.

To remove any small DC voltages, a zero operation must be performed before any measurements are made and this must be carried out with all required probes connected and the RF switched off. (See Miscellaneous secondary functions - ZERO key, Chap. 3-1 for details).

Although particularly suited for use with 6300 series sweepers, the 6500 can control any microwave sweeper capable of accepting an external ramp control. Two voltage ramps are available, a fixed 0 to 10 V and an adjustable 0 to 20 V , either may be connected via the rear panel BNC terminations. In some cases special terminations, connectors or cables are necessary to couple the 6500 to the sweeper; these can be supplied as optional accessories complete with fitting instructions.

Once this connection has been made the 6500 should be initialized to the sweeper by entering the Fl and F2 setrings on the 6500 (the F1 and F2 frequencies are those obtained from the sweeper when the external ramp is at its minimum and maximum respectively). To facilitate this procedure, the ramp is moved to the bottom and top of its range when the prompts for setting Fl and $F 2$ appear on the 6500 screen. This allows the use of a frequency counter so that measured frequencies can be entered. This is especially useful when frequencies generated under external ramp control can be affected by the front panel controls of the sweeper.

In addition to the frequency control one further connection may be necessary, If a multiband sweeper is being used then it is desirable to pause the sweep when the bandswitch points occur to avoid errors due to the delay between one oscillator stopping and the next starting. This can be accomplished by connecting the SYNC input on the rear panel of the 6500 to the appropriate blanking output of the sweeper. A single BNC lead is required. Fig. 3-2 shows the connections to a typical sweeper and a counter. The titles of input and outputs on particular sweepers are listed on the next page.

Note ...
For details of operation with 6300 series sweepers, consult the appropriate sweeper operating manual.

Fig. 3-2 Connections to Swept RF Source and Frequency Counter

Comments				Front Panel
Manufac.	Type	Ramp Input	Rear Panel	
Marconi	6300 Series	0-10 V	Use Sweep	See appropriate manual
Instruments			input	for set-up details.
	6600A/1	O-20 V	(See additional	Use Ext Sweep input.
		approx.	info. overleaf)	Set Sweep/CW to EXT.
"	6158A \& 6150 Series	0-10 V	Use Sweep Input	Set Function to SWP. (Not CW or AM)
Hewlett	8690 Series	0-20 V	-	Use EXT FM Input
Packard				Note: Need 0 to +17.5 V for fullband sweep.
"	8620C Series	0-10 V	Use Pin 28 and	Set Sweep Mode to EXT.
			43 (ground) on Socket J2 or MI	Note: Under GPIB or ramp control it may be
			Interface cable	better to use
			Part No. 3964-	Start/Stop etc.
			003. Use Sync	Marker sweep with
			plug-ins.	Note also no local
				lockout of HP8620C
				Front Panel Controls.
"	8350A Series	$0-10 \mathrm{~V}$	Use Blanking Sync on Multiband plug-ins.	Set Sweep to EXT. Connect ramp to Sweep
				Note: Sweep input and output are same BNC socket
				Note:
				Under GPIB Control set
				$F 1$ and F2 on 6500 and
				then put into FREEZE
				mode. Using Brightline
				at start adjust 8350 A
				start frequency for
				desired reading on
				counter. Repeat for
				Stop Frequency. This
				method locks out 8350A.
				Controls and offset and
				gain errors of 6500
				ramp are calibrated
				out.
Wiltron				
	610D	0-20 V	Open link BC.	Set Freq. Program to
	Series	Set 0 to	Use terminals	External.
		9.75 V	B \& D. Use	Note: If fitted with
			Blanking	GPIB (option 16) use
			Output during	SYNTH mode described in
			Bandswitch for	Operating Manual Vol.
			Sync.	la, or details of a
			(B is signal,	simple modification can
			D is ground).	be provided on request.
"	6600 \&	$0-10 \mathrm{~V}$	Use BNC EXT	Set Ext Sweep
	6600A		Sweep Input.	Note: See Under 8350A
	Series		GRIB (Opt.3)	for GPIB marker sweep.

Using Automatic Amplitude Analyzer type 6500
 to control Microwave Sweep Oscillator
 MI 6600A/L

The 6600A/l sweeper is designed to respond to an external sweep unit in the range $0-20$ volts but the RF frequency of the plug-in unit is clamped at both ends. Consequently, the nominal frequency range starts at a point corresponding to an input voltage slightly above $0 V$ and ends when that input voltage reaches a point somewhat below 20 V .

To facilitate initial setting up of the Fl and F2 limits on the 6500, the following table has been prepared. It represents the low and high frequencies which would correspond to input voltages 0 and 20 respectively, if the oscillator were capable of reaching them. They are termed the "VIRTUAL LIMITS ${ }^{-}$.

If the full $0-20 \mathrm{~V}$ output ramp from the 6500 is applied to the EXT SWEEP input of the 6600A/l and the Virtual limits are set into the 6500 as Fl and F 2 , horizontal frequency scaling and BRIGHT LINE read-out will be correct for all valid frequencies (i.e. within the nominal band of the plug-in unit).

Chap. 3-1

Fig. 3-3 Front panel controls
(1) SUPPLY

Push button switch applies the $A C$ supply voltage to the instrument for both manual and remote control operation. An associated lamp indicates chat power is on.
(2) INTENSITY controls

INTENSITY adjusts the overall brightness of the display. GRATICULE, LINE A and LINE B control the relative brightness of these three traces.
(3) Measurement mode keys

These keys select combinations of the measurement channels (A and B) and the reference channel (R) for display and storage. Units of power measurement may also be defined. The functions of the individual keys are outlined below.

[B] Displays channel B.
[MEM B] Displays contents of memory B.

Displays channels A and B.

$[R] \quad$ Displays channel R.
[MEM R] Displays contents of memory R.

Subtracts channel R from selected measurement before display.

[STORE] Used with [A], [B], [A\&B] and [R] keys to store current display to memory A, B or R. [STORE][A\&B] can only be used when channels A and B are displayed, the traces being stored to memories A and B respectively.
[STORE AV] Used with [A], [B], [A\&B] and [R] keys to store the average of the current display and the current contents of the selected memory to this memory. [STORE AV][A\&B] can only be used when channels A and B are displayed; the two channels being averaged with and then stored to memories A and B respectively.

Used with keys [A], [B] and [R]. [SUB M][A] subtracts the contents of memory A from channel A whenever this is displayed. Similarly for [SUB M][B]. [SUB M][R] subtracts contents of memory R from channels A andor B. No memory can be subtracted from channel R.

Switches between $d B m$ (default) and mW scaling for absolute power measurements; $d B$ (default) and VSWR for relative measurements.

Chap. 3-1
Page 6
(4) Scale keys

These keys define the scaling and limits of the power and frequency displays.

[DATUM] Used with numeric keys to define power level at top of display (within range $\pm 99.9 \mathrm{dBm}$).
[HIGH] Used with numeric keys to define high power limit (within range $\pm 99.9 \mathrm{dBm}$). Exceeding limit causes a warning message to be displayed.

[RANGE] Used to define power scaling (range: 0.1 to 10.9 $\mathrm{dB}(\mathrm{m})$ per division).
[LOW] Used to define low power limit (within range ± 99.9 dBm). Exceeding limit causes a warning message to be displayed.

[START] Used to define start frequency for sweep.
[F1] Used to define (enter) minimum frequency available from sweeper.

[STOP] Used to define stop frequency for sweep.
[F2] Used to define (enter) maximum frequency available from sweeper.
(5) Sweep control keys

These keys are used to select sweep speed, normal or averaged display, and the "freezing" of the display.

[NORMAL] Selects normal sweeping. Measurements are made at each of 422 positions across the screen and directly displayed. Normal sweeping is the default (power-up) mode.
[SPEED] Used to define the sweep speed. Ten speeds are available, ranging from 70 ms up to 20 s .

Selects display averaging and (re)starts averaging process.
fruzex
Freezes display to allow it to be photographed.
(6) Display keys

Used to select line or histogram display for channels A and B.

\square| Preceded by A or B, selects histogram display for |
| :--- |
| coresponding channel. |

Preceded by A or B, selects line display for corresponding channel.
(7) Miscellaneous functions and numeric keypad

The numeric keypad (digits $0-9$, minus sign and decimal point) consists of the primary (unshifted) functions of 12 of the 16 keys in this group. As their numeric function is self-explanatory, these keys are only referred to where they have a second (shifted) function associated with them.
[LIMITS] Used to enable/disable (toggle action) limits
previously set using the [HIGH] and [LOW] keys.

Selects shifted functions. Remains active until another key is pressed. Active state is indicated by illumination of integral LED.

[STATUS] Various status information is presented on the CRT. This includes limit values (and whether or not limits are enabled), $d B$ offsets (as entered via dB REL A or dB REL B), GPIB address, detector status (i.e. which detectors are connected).

[STO] When followed by memory number 1 to 9 , stores current instrument settings to the appropriate memory.
[RCL] When followed by memory number 1 to 9 , recalls previously stored instrument settings from the appropriate memory.

	IFa
	unto

DET CHAR

[DET CHAR] Allows entry of characteristics of non-Marconi Instruments detectors.

Causes entry of numeric values.
(8) PLOT key

Activates $X-Y$ plotter controls to produce hard copy of displayed results.
(9) LOCAL key

[CALAID] Used in calibration to set up the signal channel. The display obtained (of power level and range) is also useful as a confidence check.
[F1-F2] Selects full sweep: Fl to F2.
[DET] Allows detector type to be specified. $6511 / 12$ type is default. Toggle action.

Returns instrument to local (manual) control from remote (GPIB) control. Integral LED illuminated indicates local control.
[AUTO] Automatically selects values of RANGE and DATUM to give optimum display on the screen.
[ZERO] Automatically zeros any sensor connected.

The "brightine" is a vertical line extending from top to bottom of the screen, which defines the point in the sweep for which the power level and frequency are digitally displayed. At switch-on the brightline is coincident with the power axis on the left-hand side of the screen. The brightline controls (1) allow the brightline to be positioned manually or automatically at significant positions on the displayed trace, (2) define the brightline position as the center point in a sweep (3) allow markers to be placed at significant positions.

Allows the sweep width for a symmetrical sweep about the brightline position to be defined. Value entered is the total sweep width.

Sets brightline to maximum power position.
\square Sets brightline to minimum power position.

[MARKER] Places marker (a static brightline) at the brightline position. Up to eight markers may be set in this way. When the brightine is placed over an existing marker, this key causes that marker to be erased.
[ERASE] Erases all markers.

The rotary control is used to manually position the brightline. There is no mechanical limit on this control.
(11) Channel input connectors

Connectors A, B and R accept 12 pin plug connectors from the detector cable assemblies for channels A, B and R.

Fig. 3-4 Rear panel controls
(1) GPIB Interface

This option (available built-in or as an accessory) allows remote control ot the instrument and accepts the standard 24 -way IEEE GPIB connector. An adaptor, Code No. $46883-408 \mathrm{~K}$ is available for IEC 625 systems. The interface can also be used to facilitate stand alone digital plotting if required.
(2) PLOTTER

By connecting the X, Y and PEN LIFT outputs to a standard $X . Y$ recorder a plot of the current traces plus graticule and scaling information can be provided. The PEN LIFT output is usually closed circuit for pen down and open circuit for pen up; this can, however, be reversed by the user if required by following screen prompts when PLOT key is pressed.

When this socket is connected to the appropriate socket of a multiband sweeper, correct operation at the bandswith points is ensured. A High level (3 to 5 V) or Low level (-3 to -5 V) from the sweeper will pause the 6500 sweep while this sync level is maintained. When the voltage at this input returns to oV the sweep will continue. Using this input it is possible to stop the 6500 sweep for up to 600 ms at any one measurement point.
(4) RAMP
(i) FIXED 0-10 V. This output provides the necessary control voltage to drive the sweeper. When sweeping from Fl to F 2 as set on the 6500 this output will sweep from 0 to 10 V . When different start and stop frequencies have been selected this output will sweep across correspondingly different voltages.
(ii) VARIABLE $0-20 \mathrm{~V}$. The variable output provides the same function as the fixed ouput, but is for connection to sweepers which require a different drive level. The maximum range of this ramp output voltage can be adjusted using the C (coarse) and F (fine) screwdriver adjustment controls. The starting point of this ramp output can be adjusted by the OFFSET screwdriver control between $\pm 10 \%$ of its maximum setting. This operation may need more than one iteration.
(5) Fan air vent

Forced air cooling is used to maintain the required operating temperature within the instrument, therefore allow at least 75 mm (3 in) clearance at the rear of the instrument and ensure that the air vents are not obstructed. The cooling fan requires no maintenance although the air filter should be cleaned at regular service intervals.
(6) AC supply locking plate

The instrument is normally despatched with the plate locking the supply selector switch to the $210-250 \mathrm{~V}$ position. To change to 105 - 120 V operation, remove the locking plate, adjust the switch, reverse the locking plate and refit.
(7) AC supply Fuses

Supply input fuses are rated at $600 \mathrm{~mA}-\mathrm{T}$ for $210-250 \mathrm{~V}$ operation or $1.25 \mathrm{~A}-\mathrm{T}$ for $105-120 \mathrm{~V}$ operation.

Note ...
The instrument employs double fusing, and should the fuse in the neutral line rupture certain areas in the instrument may remain at mains potential.
(8) AC supply input

Accepts $A C$ supply input of $50-60 \mathrm{~Hz}$; the earth pin is internally connected to chassis.

Chap. 3-1
Page 12

OPERATING PROCEDURE

Introduction - key operation
All operations are carried out via the front panel keyswitches (or GPIB if fitted) which are used to enter commends and numerical values. Many keys have two functions, the secondary function being indicated on the top half of the push-button.

The secondary function is obtained by pressing the SHIFT key followed by the required second function key. Pressing any further key (including SHIFT) extinguishes the the SHIFT key's integral LED and cancels the secondary function mode.

Any command which requires numeric data to follow it produces a prompt or selection menu on the display. When the prompt is displayed the numerical data should be typed in followed by ENTER. For example, to set a HIGH limit of -7.4 dBm :

As ENTER is pressed, a terminator ($d B(m)$ in this ase) is displayed on the screen to confirm that the entry has been accepted. This will remain as long as the key is held down. If a mistake is made at any point the command can be entered again simply by starting the sequence again. If an ERROR message results, this indicates that an illegal input was attempted, e.g. attempting to set RANGE in excess of $10.9 \mathrm{~dB}(\mathrm{~m})$ per division:-

Prompt

Set Range

This will produce the message **Error 12 ** meaning "Entry overflow". Other error codes used in 6500 are given in Table 3-1.

TABLE 3-1 ERROR CODES

```
GENERAL OPERATING ERRORS
01 Attempt to enter more than eight markers.
02 Sweep data was invalid when last operation attempted.
03 Attempt to recall instrument settings from null memory.
04 Relative measurements on R channel (SUB M and -R not allowed).
05 \DeltaF sweep width greater than Fl-F2 range.
KEYBOARD ENTRY ERRORS
11 Negative entry not allowed for attempted operation.
12 Entry overflow.
MEMORY ENTRY ERRORS
21 Memory start/stop frequencies different to current screen settings.
22 Attempt to subtract null memory.
23 Attempt to use STORE AV on null memory.
24 Attempted memory operation on incorrect channel.
    (See table of valid operations).
```

GPIB ERRORS
For details of GPIB errors see GPIB Operating Manual Vol. la.
HARDWARE ERRORS
41 Keyboard fault.
42 ZERO fail. Caused by defective probes or RF present.
43 Timeout on D / A read. (No valid range).
44 Timeour on SYNC. input. (Check sweeper).
45 Maximum RF input level exceeded.
46 Detector temperature range exceeded.

Where an entry is made which can be independently set on the three channels, the entry will only affect the channels which are currently selected as indicated by the brightline power reading(s) at the top of the display:

Both A and B channels (but not R) will be affected by the entry.
When a selection menu is displayed, or example in setting the sweep SPEED or PLOT modes, the appropriate numeric key should be pressed. No ENTER key is required.
e.g. Set sweep SPEED of 100 ms:-

Parameter Selection	Sweep speed selection menu
	$0-70 \mathrm{~ms}$ $5-1 \mathrm{~s}$ $1-100 \mathrm{~ms}$ $6-2 \mathrm{~s}$ $2-200 \mathrm{~ms}$ $7-5 \mathrm{~s}$ $3-300 \mathrm{~ms}$ $8-10 \mathrm{~s}$ $4-500 \mathrm{~ms}$ $9-20 \mathrm{~s}$

When the instrument is first switched on, Fl and START will automatically be set of 0.01 GHz , and F 2 and $S T O P$ to 18 GHz . Before any measurements are made, the $F 1$ and $F 2$ parameters of the sweeper being used should be entered, otherwise an incorrect frequency display will result. A frequency counter may be used to facilitate more accurate settings see Fig. 3-2. The procedure is:
(a) Select [SHIFT] [FI] and read the frequency counter e.g. 2.5 GHz
(b) Enter this value and terminate using the ENTER key.
(c) Select [SHIFT] [F2] and again check the counter e.g. 6.8 GHz
(d) Enter this value and again terminate using the ENTER key.

Prompt

If at any time the relationship $\mathrm{Fl}, \leqslant \mathrm{F} 2 \leqslant 126 \mathrm{GHz}$ is not maintained, the entry will be rejected and ** Error 12** message is displayed. When this happens set $F 2$ first, then Fl.

This sequence will also set START and STOP to Fl and F2 so full width sweep of F1 to F2 will result.

KEYSWITCH FUNCTIONS

Measurement mode keys

The purpose of these keys is to select the required channels and memories appropriate to the measurement being made. The mode should be set up by first selecting one of the four options:-

Select Channel A for display

Select Channels
A \& B for display

Select Channel R
for display

The above keys are independent and will initially provide a swept display of power on the selected channel(s). At switch on, the display is set automatically to channel A in dBm. The UNITS key allows the user to select a display in either $d B m$ or mW (toggle action). Note that the mW scale is fixed at $0-5 m W$ and cannot be altered in either RANGE or DATUM.

Switches between dBm (default) and mW scaling, if measurement is of absolute power.

To indicate that an 'absolute power" mode (Channel A, Channel B or Channel A\&B) is selected, the plot title "Power" will appear at the top of the screen, and the units will be displayed at the top of the Power axis. The power at the brightline position is shown below the plot title for each selected channel, e.g.:

$$
A=+16.7 \quad B=-49.32 \mathrm{dBm} \text { (See Chap. 1, Page 2, Fig. 1-1) }
$$

Since no sweeper's output is perfectly flat across its frequency sweep it is often necessary to cancel the variation in output level of the sweeper to obtain a true display of the response of the device under test. This is achieved in the 6500 by the provision of a live Reference channel. The reference channel detector and measurement channel(s) detector(s) are connected to the same sweeper, and the reference channel's response is simply subtracted from that of the measurement channel(s) by selecting the $[-R]$ key.

In this way, any variation in the sweeper's output is removed from the measurement.

Subtracts response on channel R from selected measurement channels before display to screen.

When $[-R]$ is selected (e.g. with $A \& B$) it will be indicated by the ticle:
Gain/Loss Channel A\&B (-Ref)
whenever the live Reference mode is selected it will be indicated in the title by "(-Ref)".

Note...
(1) Loading effects may cause variations in the output of an inherently "flat" sweeper which would also necessitate the subtraction of the reference channel to give a true response for the device under test (DUT).
(2) No relative ($d B$ REL) or gain/loss (- R) measurement may be made on Channel R itself. Any attempt to do so results in an * Error 04 * * message.
(3) Before any measurements are displayed in this mode, a sweep must be made on the R channel. This is not displayed but will be noticed as a delay before a trace appears.

The scaling represents the difference in absolute power levels between channel R and channels A, B or $A \& B$ and will be displayed in $d B$. If the measurement system is such that this represents a VSWR, the scaling can be changed via the UNITS key to give a VSWR range of $1.0: 1$ to 3.0:1. This is a fixed range and cannot be altered by RANGE or DATUM.

Switches between $d B$ (default) and VSWR scaling if measurement is gain/loss or relative (A / B or $A \& B-R$)

An additional facility is provided by the dB REL A and $d B$ REL B keys. The two keys, (one for each measurement channel) allow the user to select a 0 $d B$ reference either at the current brightine reading, or at any other level by selecting a numeric offset. Both keys act independently to allow different positions to be set on the two measurement channels.

Prompt
Enter offset $d B$ Rel $A(o r B)$

If the ENTER key is pressed with no number entry the current brightine reading is made a 0 dB reference. Alternatively the required numeric offset may be entered followed by the ENTER key to terminate the entry. The STATUS
display will show the current values of offsets entered for both A and B channels. (See paragraph on STATUS key).

When an offset has been entered, the title will become
dB Relative
If in addition, the live Reference mode has been selected, this will again be indicated :
dB Relative (- Ref)
Note ...
It is possible to perform a $d B$ Relative function on only one trace when two channels are simultaneously displayed. This allows absolute power ($d B m$) and Relative measurements ($d B$) to be displayed at the same time; the title will, however, remain as above.

Chap. 3-1

Memory operation

The STORE key and the SUB M key in the mode block refer to the three available memories (A, B or R), which are each capable of storing a complete sweep of 422 measurement points.

Each of the operating modes previously described may be modified by use of these memories. For instance, the frequency response of a device may be removed from future measurements by first storing the response ([STORE] A, B, or R) and then subtracting the stored values from the live display ([SUB M] A, B or R). This procedure is known as "no rmalisation".

In all cases, whenever a memory is being subtracted from a measurement, it is indicated on the title by the memory name (A, B or R) in brackets, e.g.

Gain/Loss (-A,R)
indicates ' A ' and ' R ' memories are subtracted.
dB Relative (-Ref) ($-B$)
indicates $d B$ relative mode with live reference and the contents of memory - B - being subtracted before display.

The STORE key allows the current trace(s) to be stored to memory. When pressed, the prompt Store to Memory appears and the current sweep in progress will stop. This should be followed by a key as indicated below.

Stores current trace to Memory A.
This cannot be used when $A \& B$ are simultaneously displayed.

Stores current trace to Memory R.
This cannot be used when $A \& B$ are simultaneously displayed.

Stores current Channel A trace to Memory A, and Channel B trace to Memory B. Only use when A and B are simultaneously displayed.

Pressing "NORMAL' cancels STORE mode, and sweep continues without any change to operating mode or memory.

An additional facility is provided to average the contents of a memory with a current trace, and store the result. This is achieved by preceding the above keystroke sequences by SHIFT. This accesses the store average facility, and the prompt

AVERAGE TRACE TO MEMORY

will appear. The operation remains the same as STORE but with the difference that the current trace is averaged with selected memory before it is stored to it.
e.g. \square STOEAV average current trace with memory A and store result to memory A.

Note . . .
** Error 23 ** message is produced if an attempt is made co STORE AV to a memory which has no contents. The function is, however, performed assuming contents to be zero. No STORE is allowed in VSWR or mW units.

The operation of the SUB M key is as follows:-
Parameter
Selection Prompt Terminator

Subtract memory A from trace A. Use whenever Channel i is displayed.

Subtract memory B from trace B. Use whenever Channel B is displayed.

Subtract memory R from trace A and/or B as selected. Use whenever Channel A and/or B is selected.
Note . . .
(1) No memory can be subtracted from Channel R.
(2) Memory R is subtracted from both Channels A and B if these are displayed when [SUB M] [R] is selected.
(3) It is not possible to subtract Memory A from trace B or vice-versa.
(4) Message ** Error 22 ** will be generated if an attempt is made to subtract a memory with no contents.

Valid memory operations are summarized in Table 3-2. Any attempt to select the memories in a way other than those listed will result in an ** Error 24 ** message being displayed. The contents of any memory may be examined at any time by pressing SHIFT followed by the channel memory required.

$$
\mathrm{e} \cdot \mathrm{~g}
$$

Displays Memory A.

TABLE 3-2 VALID MEMORY OPERATIONS

CHANNEL	A	B	$A \& B$	R
Store trace to memory	A B R	A B R	A to MEM A B to MEM B	A
Subtract Memory	A R	B R	$\begin{aligned} & A \\ & B \\ & R \end{aligned}$	

Two methods of sweeping are available: NORMAL and AVERAGE. When [NORMAL] is selected, measurements are made at each of the 422 positions across the screen, displayed and directly stored to the appropriate display memory. (N.B., not the selectable channel memories accessed via STORE). The AVERAGE key enable signal processing to provide noise reduction by averaging the current measurement with the contents of the display memory corresponding to the same ramp position. This is done for every measurement point and has the effect of reducing noise over consecutive sweeps. This process restarts whenever the AVERAGE key is pressed.

Selects averaging mode and restarts averaging process

Note ...

The averaging mode should be started when a steady trace is present. If changes in power level occur during a sweep in this mode, the trace will not return to a true representation of the measurement until many sweeps have occurred as it creats the changes as noise to be removed. If a change to the system is made, AVERAGE should be pressed again to restart the process. To cancel AVERAGE press NORMAL.

The actual number of measurements taken at each measurement point and consequently the sweep SPEED is selected by the secondary function as shown in the example below. A sweep speed of 200 ms is selected.
Parameter Selection menu Selection

Sweep Speed

$0-70 \mathrm{~ms}$	$5-1 \mathrm{~s}$
$1-100 \mathrm{~ms}$	$6-2 \mathrm{~s}$
$2-200 \mathrm{~ms}$	$7-5 \mathrm{~s}$
$3-300 \mathrm{~ms}$	$7-10 \mathrm{~s}$
$4-500 \mathrm{~ms}$	$9-20 \mathrm{~s}$

$0-70 \mathrm{~ms}$
6
2-200ms 7-5 s
3-300 ms 7-10 s

Select Option

Note ...
(1) No ENTER key operation is required to terminate the sweep speed entry.
(2) The speeds shown are nominal and will vary depending on power level,
shape of trace and any delays introduced by sweep hesitation etc.
(3) The sweep speed and sweep mode selected are displayed on the screen in the top right corner.
(4) Sweep speed 0 provides reduced resolution - only half the number of measurement points are taken with one measurement occupying two display points - but this gives a "real time" feel for adjustment or peaking of devices under test.

The FREEZE mode allows the sweep to be stopped for examination or photography. In this mode the ramp outputs on the rear panel will track any movement of the brightiine allowing frequency accuracy checks to be made. This key has a toggle action, and pressing it again will cause the sweep to restart.

Display keys

nist	\square

There are two methods of presenting the trace on the screen, HISTogram or LINE format. This is for visual effect only and does not affect any operation of the instrument. It is useful when displaying two traces simultaneously to have them in different forms for easy identification of channels. When pressing the HIST or LINE keys, the selected channels are affected.

Sets up display of channel A in Histogram and B in line format.

```
Note ...
```

Channel R is displayed on the same format as selected for Channel A.

```
PRT
```

The 6500 has a facility enabling a hard copy of the display to be obtained using a standard $X-Y$ (analogue) plotter. Three outputs are provided from the rear panel for connection to the X, Y and Pen-lift inputs of the plotter. The X and Y outputs provide signals in the range $0-10$ volts, while the Pen-Lift output is an open-collector drive.

At any time when there is a complete trace available on the screen, press PLOT.

> A selection guide is displayed covering all the facilities available in the PLoT mode. Selecting 0 will cause all three operations 4,5 and 6 to be carried out in sequence.
> 0 - Plot all
> 1 - Pen Botton Left
> 2 - pen Top Right
> 3 - Pen to Origin
> 4 - Draw Axes
> 5 - Label Axes
> 6 - Plot
> 7 - Set Pen Lift
> 8 - Set Plot Speed
> 9 - Set Live Y

Prompt New display

When Live Y is enabled the Plotter Y output voltage follows the screen update point during sweep operations. The top of the screen corresponding to 10 V and the bottom to 0 V . Resolution is 256 steps. The plotter Pen-Lift output is also set to pen down during ramp retrace. This facility may be used for RF blanking during retrace if desired.

1) The X and Y outputs are set to minimum, allowing adjustment of the plotter sensitivity and zero controls to give a position at the bottom left of the paper.
2) The X an Y outputs are set to maximum, allowing adjustment of the plotter sensitivity and zero controls to give a position at the top right of the paper.
3) When a plot is made space is allowed for labelling of the axes. If this is not required, this option allows the origin of the displayed trace to be set as opposed to bottom left ((1) above).

Chap. 3-1
4) The X and Y axes are plotted including "tick' marks indicating positions of the frequency graticule lines. Ticks are also provided to show the positions of any markers present, including the brightline.
5) The DATUM(s) and RANGE(s) are written to the left of the Y-axis, the DATUM(s) at the top. If two traces are being plotted, a pause is introduced when the data pertaining to the A trace has been written, allowing a pen change. When ready, press ' 1 ' as prompted to continue the labelling.
6) The displayed traces are copied to the plotter. If both A and B channels are selected, B is plotted first. After a pen change, if necessary, press the numeral l key as prompted to continue the plotting.
7) Set sense of pen lift drive. Normally pen lift output is high impedance for PEN UP. Select INVERT for low impedance for PEN UP. Options are presented as a separate prompt:

	Prompt	New display
Set Pen Lift		
$1-$ NORMAL		
$2-$ INVERT		

8) When plotting and drawing alphanumerics the 6500 maintains the pen speed constant. Select pen speed from 1 to 9 (l is fastest) to suit plotter slew rate. Prompt is displayed -

Prompt
New display

Set Plot Speed (1-9)

Set fastest speed

As each function is completed, the instrument returns to the initial selection guide co allow further instructions. To return to normal operation press NORMAL.

Note ...
"Digital Plot- facilities are available when using the GPIB Interface (Option 001). Details of this are given in the GPIB Operating Manual, Vol. la.

Fig. 3-5 Typical X-Y plotter presentation

The four scale keys and their associated secondary functions allow operating parameters to be entered on the numerical keyboard. Two keys are used to set the power range and limits and two are used to set the frequency range.

Power range and limits

When the instrument is first switched on, the display shows an amplitude scale of +20 to -80 dBm (DATUM +20 dBm , RANGE $10 \mathrm{dBm} / \mathrm{division)} \mathrm{on} \mathrm{channel}$ A. The instrument's total dynamic range of 100 dB is thus displayed. DATUM and RANGE can be entered individually for each channel A, B and R, and only the channels currently selected will be altered when the parameter is entered.

Set DATUM within range +99.9 to $-99.9 \mathrm{~dB}(\mathrm{~m})$, e.g.

As each numeric key is pressed, the number is displayed to the screen until ENTER is pressed. whereupon their terminator "dB(m)" will be displayed, showing the entry has been accepted. The entry may be abbreviated if no decimal data is required.

Set RANGE within range 0.1 to $10.9 \mathrm{~dB}(\mathrm{~m}) /$ division $\mathrm{e} . \mathrm{g}$.

As each parameter is entered, the power scale will be adjusted and the sweep automatically restarted.

I Im
Nm

Pressing the AUTO key will automatically select values of RANGE and DATUM to give optimum display of the screen contents.

Note...
Pressing RANGE or DATUM keys will have no effect when displaying VSWR or mW scaling.

Different HIGH and LOW limits may be entered for the A and B channels.

If the LIMITS facility has been enabled (as indicated by an ' L ' on the top left corner of the screen) each complete sweep will be checked to ensure it is within the present limits for that particular channel. If any point in the trace exceeds these limits, a message is displayed at the top of the screen indicating which limits have been exceeded. If, on a following sweep the power level returns within the limits, the message is erased and replaced with the original title.

To set level limits, first select the channel that the limits will apply [o, and then enter as for DATUM or RANGE (above) but precede the sequence by SHIFT.
e.g. Set HIGH limit of ${ }^{ \pm} 99.99 \mathrm{~dB}(\mathrm{~m}):$

These limits will be stored until new values are entered, even if the LIMITS facility is disabled.

Frequency range
The frequency information presented on the bottom line of the display is calculated assuming a linear response from the sweeper to the 6500^{-}s external ramp. To obtain a frequency reading at all brightine positions, the frequencies generated by the sweeper at the top and bottom of the range of the applied ramp must be entered into the 6500. These frequencies are termed 'Fl' and 'F2' respectively. Providing the sweeper is stable, it should only be necessary to enter these values once.
e.g. Set up X-band sweeper.

When the prompt Set Sweeper Fl is displayed, the ramp is set to the bottom of the range. Confirmation of the low limit fl frequency is best obtained by reference to a frequency counter connected as shown in Fig. 3-2.

Here the ramp is set to the top of the frequency range and this frequency is again best confirmed by using a frequency counter.

Note ...
(1) Some sweepers have front panel controls which affect F1 and F2 even when driven by an external ramp. If these are adjusted after the 6500 has been set up the frequency information may be incorrect.
(2) When using the variable $0-20 V$ ramp, a DVM may be necessary to check
for correct ramp output voltage limits when adjusting the "coarse" and 'fine" screwdriver controls.
(3) If an attempt is made to set F2 <Fl, ** Error l2 ** message is displayed.

Once the 'F1' and 'F2' parameters have been set, it is possible so select any portion of this range to correspond to a full sweep on the 6500. As there are 422 measurement points and 4096 possible ramp points it is possible to expand the frequency scale approximately ten times without any significant loss in resolution. To select the required frequency band, use "START" and - STOP".

Set a band of $9-10 \mathrm{GHZ}$ (F1 and F2 previously set at 7.96 and 12.3 GHz).

As each parameter is entered, the alphanumeric scaling and frequency related graticule lines are adjusted.

Note ...
(1) An entry will be rejected as an error if the condition F2) STOP> START> F1 is not met.
(2) Frequency graticule lines will not be generated for sweep widths less than 100 MHz .

The BRIGHTLINE may also be used for setting START and STOP making numeric entry unnecessary.
e.g. Press START key and move the BRIGHTLINE to the required start point.

Prompt
Set Start Frequency

Note
As enter is pressed, the brightline frequency is copied to the screen and the terminator " GHz^{\prime} displayed showing the entry has been accepted. The BRIGHTLINE is also moved to maintain its frequency position: to the far left for START and to the far right for STOP.

In addition the ΔF key may be used to set symmetrical sweeps, this is discussed under the BRIGHTLINE Keys section.

Prompt
Enter Sweep Width

At the prompt Enter Sweep Width, move the brigntline to the point about which a symmetrical sweep is to be made. Select [1]. On pressing the ENTER key a 1 GHz sweep about the position of the brightline is obtained.

The scaling of the frequency graticule lines and the START and STOP parameters displayed on the screen will be adjusted, and a new sweep will be started.

Note ...
If a sweep width is entered which would generate an illegal START and/or STOP frequency, the 6500 will only sweep up to the limiting frequency and the sweep will therefore not necessarily be symmetrical about the brightline position.

MIN/MAX Keys

The MAX or MIN keys are used to identify maximum and minimum level points in the currently displayed sweep(s). When one of these keys is pressed, the sweep update is stopped and the brightline moved to the maximum or minimum position appropriately. The measured max/min point is always selected regardless of whether this point is actually displayed, or of the relative positions of two traces on the display. The brightline spot measurement data is also updated.
e.g. To find maximum and minimum point:

Brightline is automatically moved to maximum data point on current trace and amplitude and frequency information is updated.

Brightiine is automatically moved to minimum data point on current trace and amplitude and frequency information is updated.

MARKER key

Markers identical in form to the brightline (except that they do not extend below the bottom of the graticule) may be positioned anywhere within the graticule to identify important frequency points by using the brightine control with the MARKER key. When this key is pressed a marker will be left at the brightline position. Up to eight markers may be displayed on the screen at any cime. Any individual marker may be removed by placing the brightilne back over it and pressing MARKER again, alternatively all may be removed by using the secondary function, ERASE.
Place marker at brightline position, or
remove existing marker if brightine is coincident
with it.

Remove all markers

LOCAL key
0

The integral LED indicator in the LOCAL key monitors the state of the instrument under remote control. The LED off indicates remote control and the front panel keys (and brightline control) are inoperative apart from the LoCAL key. Providing the LOCAL LOCKOUT message has not been sent to the instrument, manual control can be regained by pressing LOCAL. This key has no effect when the instrument is already under manual control.

Limits	dest 1		\bullet
7	ε	9	SWIFT
57aT	50	R2	Iza
4	5	ε	Num
CNLAE			DEI
:	2	3	Fi-f
seprey		DET EMAP	
-	0	-	Embr

ZERO Key

The ZERO facility is used to set up the instrument's signal channel after power-on and when changes in ambient temperature, or changes in the system occur.

The ZERO facility must only be used with no incident RF at the detector. If a ZERO is attempted with RF power applied to the detectors (and this cannot be completely nulled out) an error message will be displayed and all subsequent measurements will be affected.

When a channel has been successfully ZEROED, the message Ready will be displayed next to the channel identification. If no Probe is connected or the channel fails to ZERO, the messages No Probe or Fail will be displayed.
e.g. Probe on Channel A, No probe on Channel B, RF power on Channel R.

Autozero:

A Ready
B No Probe
R Fail

If a situation other than all channels being "Ready" occurs che message desribing the ZERO operation will be left displayed. No error is produced for a "No Probe" condition, but ** Error 42 ** message will be produced for a "Fail". A channel which has been successfully ZEROED will display a Power level, when averaged, between -55 and -61 dBm .
ibte ...
The ZERO operation also sets up internal calibration which affects 10 dB range overlaps. Consequently if the ZERO operation occurs with RF power present these ranges covering all power levels will also be affected. However, if the ZERO drifts due to temperature changes of system effects, the inaccuracy introduced is greatest at low power levels. Before measurments are made at low power levels, a ZERO operation should be repeated with the RF turned off.

STO and RCL keys

Up to nine complete instrument states may be saved for recall later. To save an instrument setting press the SHIFT and STO keys.

Prompt

Store Settings

With the Store Settings prompt displayed the appropriate operating Store Number ($1-9$) should be selected. The following parameters are stored:

Limits and limit checking status.
DATUM and RANGE(s)
F1, F2, START and STOP
Sweep Speed
Channels and Mode including $d B$ Rel values
Markers
Temperature correction ON/OFF
To recall one of these stores use RCL

Prompt

Recall Settings

cunti
1

The parameters in Store 1 are re-entered into the instrument and the STATUS is displayed for confirmation of the current state of the instrument. If nothing has been entered into given store and an attempt is made to recall data from it the *** Error 03 *** message will be displayed. It is useful to record the contents of each store on a wo rksheet. A sample worksheet is shown in Fig. 3-6.

Note ...
The contents of channel (display) memories are not stored. Use STORE for this.
6500 AMPLITUDE ANALYSER - INSTRUMENT SETTINGS WORKSHEET

PARAMETER	STORE 1	STORE 2	STORE 3	STORE 4	STORE 5	STORE 6	STORE 7	STORE 8	STORE 9
F1 FREQUENCY									
F2 FREQUENCY									
START FREQUENCY									
STOP FREQUFNCY									
SWEEP SPEED									
CIIANN EL.									
DATUM (A)									
RANGE (A)									
DATUM (B)									
RANCE (B)									
DATUM (R)									
RANGE (R)									
-R									
SUB N (A/B/R)									
dB REI (A/B)									
dB REI. REF (A)									
dB REL REF (B)									
UNIT'S									
AVERAGE ON/OFF									
LIMITS ON/OFF									
HIGII L.IMIT (A)									
I.OW L.IMIT (A)									
HIGH LIMIT (B)									
LOW LIMIT (B)									
HARKER 1									
MARKER 2									
MARKER 3									
MARKER 4									
MARKER 5									
MARKER 6									
MARKER 7									
MARKER 8									
TEMP. CORRI.ON/OFF									

The current status of the instrument is displayed on the screen using the SHIFT and STATUS keys. Information is then provided about those parameters of the instrument which are not normally displayed.

Displays instrument status
An example is shown below.

6500 Status
Channel Limits (Disabled)
A(High) +99.00 A(Low) -99.00
$B($ High $)+99.00 \quad B($ Low $)-99.00$
dB Rel A 0.00 Fl 0.01
dB Rel B 0.00 F2 18.00
GPIB Address: 8
Detectors (ABR): 111 (Indicates detector types. See DET)
Temperature Correction: On

LIMITS key

LIMITS is a toggle action key and is used in conjunction with the SHIFT key to either enable or disable the limits checking facility. Checking the operating limits takes approximately 10 ms . Consequently, disabling the facility will provide slightly faster sweep speeds. An "L" is displayed above the amplitude scale(s) on the upper left screen when the faciiity is ciailen.

Enable/Disable limit checking facility. Limit values not affected.

DET key
When an detector other than the basic 6511/12 type (0.01-18 GHz) is to be used, appropriate temperature and square law correction needs to be applied to that detector's range. For the 6514 detector, the correction figures are stored in the 6500^{\prime} s memory and these can be applied by selecting ${ }^{-4} 4^{-}$for the appropriate channel(s) on selection of the DET key:

Similarly, $1^{\prime \prime}$ corresponds to the $6511 / 12$ detector. It your instrument contains firmware Issue 7 , the characteristics of the 6513 detector are stored in the instrument and can be applied by selecting - 3^{-}. If your instrument contains firuware Issue 6, the 6513 correction figures will need to be entered via the DET CHAR key. See 6513 Instruction Manual for details.

If detector ${ }^{-} 0^{-}$is specified for any chantel, square law correction and temperature compensation is disabled on that channel, so that the displayed amplitude has a square-law relationship to the actual amplitude, and is temperature dependent. The user can then make his own allowances for square law deviation and temperature errors. At power-on 6511/12 cype detectors will always be selected for all three channels A, B and R.

The characteristics of non-MI detectors should be entered using DET CHAR.

The SHIFT and DET CHAR keys are used to enter the characteristics of up to three non-MI detectors. On selection the following table is displayed:

Enter Value:

Detector	Sensitivity Adjustment	Correction Start
$\mathbf{7}$	$>$	0.00 dB
$\mathbf{8}$	0.00 dB	0.00 dBm
$\mathbf{9}$	0.00 dB	0.00 dBm

For each of the three "user programable" detectors, 7, 8 and 9, there are two characterisation parameters:
(1) The "sensitivity adjustment" is a simple constant offset added to the detector's power reading. For example, the values automatically selected for the 6511 and 6514 are 0 dB and +3.9 dB respectively.
(2) The "correction start" is the power level at which square law correction begins to take effect. Correction start values automatically selected for the 6511 and 6514 are -27.0 dBm and -24.86 dBm respectively.

The method for establishing the values for non-MI detectors is given in Appendix A. Note that values must be obtained for each individual detector, not just for a particular type.

Values of sensitivity adjustment and correction factor may be entered into the table for each detector. The cursor > indicates the value which is currently enabled to be changed. Numeric values may be entered in the range -99.9 to $+99.9(\mathrm{~dB} / \mathrm{dBm})$, cerminated by [ENTER]. If you press [ENTER] without numeric entry, the cursor steps to the next entry non-destructively.

When changes to the table are complete, press [NORMAL].
To use any of the "user programmable" detectors, use [SHIFT][DET] and select as described in the previous section.

SECRET key

To remove the frequency scaling information, press SHIFT and SECRET keys. This is for use when frequency bands being used should not be generally displayed or are irrelevant. Usually used for photography/ploteing. This function has a toggle action.

SHIFT and CALAID keys are used in the factory when initially setting up the instrument signal channel and for later re-calibration. It can also be used as a confidence check by the user.

The dispay removes the graticule and instead shows a measurement of power on the selected channel, and identifies which range(s) the instrument is using for the measurement as shown below. The columns RO, R1 and R2 show the appropriate states of the internal digital lines which select the ranges.

CALIERATION AID

KEYS: 0 CYCLE, i-6 HOLD RANGE
ア-9 SELECT CHANEL A,B,R

Fig. 3-7 Calibration aid display

When in CALAID the Keys $0-9, \operatorname{SHIFT}$ and SECRET have different functions:
0 An attempt is made to make a measurement on each of 6 ranges and readings which the instrument considers valid are displayed. This continues cyclically.

1-6 Holds range 1-6 (indicated by flashing "H" adjacent to selected range). Only when valid measurements are made on the held range will they be displayed.
$7,8,9$ Select which channel measurement is to be made on; A, B or R.
SHIFT Select Temperature Correction ON/OFF (toggle action).
SECRET If selected, the readings from the Temperature sensor are displayed, otherwise OFF will be displayed.

To check the integrity of the signal channel, adjust the $R F$ power to a level where a reading is obtained on two adjacent ranges. The readings should be the same. The bar on the right will indicate any difference between the two.

Note ...
(1) A valid ZERO operation must have been performed.
(2) The bar should settle to the same level as the horizontal line on the centre; to reset the bar, reselect the channel.
(3) The setting of LINE and HISTOGRAM for the A or B channels may be disturbed after using CALAID.

The temperature correction facility makes allowances for variations in detector characteristics at different temperatures. A reading from the sensor is displayed for each Channel in CALAID if for any reason this is not required it can be switched out. The correction applied is insignificant in the temperature range $19-27{ }^{\circ} \mathrm{C}$.

Chapter 3-2

APPLICATIONS

Introduction

The concept of swept frequency response testing is well established as a measurement technique. The versatility of 6500 enables a wide variety of microwave measurements to be made, without recourse to "pencilled" reference marks and without the need to establish reference offsets in dB ratio loss/gain measurements; in fact 6500 measures and displays absolute power. In addition the display provides all the information necessary to identify frequency, amplitude, out of limit operation, etc for the particular measurement.

The display, using on-screen graphics and the unique PLoT facility enables easy interpretation and recording of results.

Measurements that can be made using 6500 fall into 5 main categories:
Absolute power vs. Frequency
Transmission loss or gain vs. Frequency
Return loss vs. Erequency
Power output or gain vs. Power input
Comparison or ratio measurements

The 6500 provides a ramp output voltage which is used to tune an $R F$ source requiring either a fixed $0-10 \mathrm{~V}$ input or a variable $0-20 \mathrm{~V}$ input. Some RF sources may need adaptors to access this external drive (e.g. 8620C series sweepers from Hewlett Packard). Others may need minor changes to enable the external drive (e.g. 6600 series Sweepers from Wiltron require the top cover to be removed and the EXT SWP switch turned on). In case of doubt refer to $R F$ source manufacturer's instructions.

On multiband sweepers it may be necessary to use the SYNC input to 6500 to create a pause in the sweep ramp to allow for the time delay as oscillators covering different parts of the band are switched in and out. If this is not done, small break lines may appear in the 6500 display at band switch points. Ensure that any amplitude modulation (e.g. 1 kHz) is switched off.

Initialization of the system is common to all measurements with 6500. Two main steps are involved:
i) Zeroing of the detectors.
ii) Alignment of frequency coverage with 6500 display.

Zeroing

Zeroing must be performed with the detectors connected to the instrument and the RF source turned off.

Press

ER00

6500 holds up the sweep while the build up of $D C$ voltages in the probes and front end ciruitry are nulled. The display shows when this operation is completed. Note that the Autozero Status Message is automatically erased at the end of the ZERO operation if all tince channels zero sarisfactorily. If the result is not as shown, refer to Chap. 3-1, "Zero key".

Fig. 3-8 Auto zero status message.
Chap. 3-2
Page 2

For sweepers driven from the $6500^{\circ} \mathrm{s} 0-10 \mathrm{~V}$ ramp, frequency alignment is achieved as follows:

Set Fl

The 6500's ramp will be driven to $0 \vee$ and thus the sweeper frequency will be a minimum. Measure this frequency using a counter and enter it into the 6500. For example, to set up and enter Fl of 2.5 GHz the sequence is:

Prompt

Set Sweeper Fl

Set F2

The $6500^{\prime \prime} \mathrm{s}$ ramp will be driven to 10 V and thus the sweeper frequency will be a maximum. Measure this frequency using a counter and enter it into the 6500 . For example, to set up and enter F 2 of 6.8 GHz the sequence is:

Prompt

Set Sweeper F2

For sweepers which require a drive voltage other than $0-10 \mathrm{~V}$ but within the range $0-20 \mathrm{~V}$, the $0-20 \nabla$ zamp output is used. Before entering $F 1$ and $F 2$, the specified minimum and maximum voltages for the sweepers drive ramp must be set up as follows:

The ramp will be driven to the current minimum setting. Monitor the voltage across the $0-20 \mathrm{~V}$ output connector and adjust the OFFSET screwdriver control for the specified minimu drive voltage of the sweeper.

The ramp is driven to the current maximum setting. Again monitor the voltage across the $0-20 \nabla$ output and use the C (coarse) and F (fine) screwdriver controls co adjust for the specified maximum drive voltage of the sweeper.

With the limiting drive voltages correctly set, the minimum and maximum sweeper frequencies can be set up, measured and entered as for the $0-10 \mathrm{~V}$ ramp.

Note ...
In the following procedures it is assumed chat zeroing and frequency alignment have been carried out.

Fig. 3-9 Absolute power measurements, incerconnecting diagram

6500 will display the absolute power output of the RF source. The maximum and minimum values can be read using the BRIGHLINE controls and the variation in power easily noted. Particular areas of interest in the swept power performance can be examined by using the 3RIGHTLINE and

keys to change the displayed frequency range. The 6500 will display the power directly in mW on a scale 0-50 mw by depressing
intts
key. The set up could also be used for checking the variation in
power of solid stace microwave oscillators such as varaceor cuned Gunn and FET Oscillators using a linearizer if necessary. However the linearity of the Erequency display would be no better than the linearity of cuning of the oscillator.

The arrangement used for the absolute power measurement (Fig. 3-9) could be used to measure the insertion loss or gain of a device. The method would be to first connect the detector directly to the sweeper to obtain the characteristic trace of the sweeper in che frequency range of interest. This response would be stored to memory and the device under test (D.U.T.) inserted between detector and sweeper. If the stored sweeper response is now subtracted from the live display (using the SUB M key) it might be assumed chat the trace obtained is a rrue representation of the response of the D.U.T. This assumption is not always correct, however, since:
(1) Sweeper output may vary with time.
(2) Sweeper output may vary with load.

To overcome this problem a reference channel (Channel R) is provided, which allows any variation in the output of the sweeper to be taken into account in the display of insertion loss/gain. This arrangement is shown in Fig. 3-10.

Fig. 3-10 Insertion loss/gain measurement, interconnecting diagram.

A power splitcer is connected to the sweeper output wint the reference channel (R) detector connected to one arm of the splitter and the measurement channel detector connected to the other arm.

This arrangement reduces the maximum displayed dynamic range by 6 dB , due to the loss in the splitter. If this is unacceptable, a directional coupler may be preferred. Another reason for preferring high diractivicy couplers is that they have better isolation characteristics than power splitters, which means chat there is less chance of reflected signals from channnel R giving rise to errors on channel A.

The measurement method is to first perform a calibration run of $A-R$ and store this trace to memory A, then connect the D.U.T. and display the live A-R with memory A subtracted.

The cechnique still needs to be used with some caution since RF source
harmonics will add to the power measured by the detectors and could (depending on the phase and on the characteristics of the device under test) give significant errors. RF source harmonics should be at least 40 dB down on the carrier level. The accuracy of the 6500 with 6510 series detectors is highest in the region of 0 dBm , and although the 6510 series detectors square law deviation is corrected by the 6500, the errors increase as incident power increases. Hence measurements should ideally be made with incident power levels between +10 and -40 dBm . If sweeper harmonics are higher than -40 dBC , a low pass filter should be included in the output circuit, though this may limit useful measurements to octave band frequency ranges. To preserve a good source match a padding attenuator may be needed between the filter and the power splitter/coupler. The coupler should be of high directivity, again co provide a good source match.

The error effect of $R F$ source harmonics is tabulated in the Marconi Instruments publication "Microwave Datamate", which contains other useful information on microwave measurements.

The 6500° s keyboard control allows the transmission loss/gain measurement to be made very rapidly. With detectors and any adaptors connected to the two arms of the power splitter or coupler select the following keys:

Without device under cest:

Normalize display :

Insert device under cest. Use AUTO if required to obtain best fit of the crace on the screen.

Fig. 3-11 Insertion loss measurement display
Chap. 3-2

Measurement of return loss

Recurn loss or VSWR of a device may be measured using a high directivity coupler or bridge co provide a sample of the reflected power. The use of the reference channel, the need for low source harmonics and the need for a good source match are equally applicable for the accuracy of this measurement.

Fig. 3-12 Return loss measurements, interconnecting diagram
To provide a calibration for return loss or VSWR measurements the average value of reflections from an open circuit and a short circuit over the frequency band of interest is stored in memory B.

The Reference channel, as before, is subcracted from each display to remove variation of the RF source. When the unit under test is connected to the test port the resultant return loss is displayed by subtracting R and subtracting memory B. This return loss may be viewed directly as a VSWR on a scale up to 3:1 by pressing the UNITS key.

If the device under test is a one port device the above procedure is adequate bearing in mind the sources of error due to source march, detector variations and 6500 channel accuracy. However if the unit under rest is a multiport device, the remaining ports should bè properly terminated.

A microwave bridge usually has an insertion loss of abour 6 dB and this may limit the effective dynamic range, particularly since the power handing may be limited. A coax wideband coupler, however, generally has a narrower frequency range with reduced insertion loss and higher power handiing capability. With open circuit termination to bridge or coupler, store the response in memory B by selecting the following keys:

Replace open circuit by short circuit and then select SHIFT, STORE AV, and B channel keys:-

This stores the average of the open and short circuit reflections in Memory B without the effect of sweeper variations. Insert device under tests, properly terminated if necessary, and select the following keys:-

901
3

3 ma
\square

The display now shows the return loss of the device in dB .

unITS To convert to VSWR press the UNITS key.

Gaim/Lose (-Raf. x (-3$)$
VSW
3.
3.
2.
2.

Fig. 3-13 Return loss measurement display

The procedure follows that for Return loss in that the channel A detector senses the cransmitted signal, channel B the recurn loss signal, and channel R is used for reference to normalize the response. Open and short circuit calibration data is stored in Memory B and subtracted from the display on channel B once the unit under test is inserted e.g. Connect detector A to measurement plane.

Measure power at A subtracring reference channel and store in Memory A

Remove detector A and follow procedure for open and short circuit calibration.

Open circuit:

		Stove A
9	-R	ST0

Short circuit:

Remove the short circuit and insert the device under test:

For Recurn Loss:

For Transmission Loss:

Both may be viewed by pressing the following keys:-

The results are shown illustrated in Fig. 3-14.

Fig. 3-14 Simultaneous return loss and transmission loss display

Using similar high directivity coupler (>40 dB), return loss and transmission loss measurements may be made in waveguide systems using che arrangement shown in Fig. 3-15. The 6511 or 6512 detectors are coupled to the system through coax to waveguide transformers.

Fig. 3-15 Waveguide measurements, interconnecting diagram
Calibration is made using a waveguide short circuit. The device under test is then inserted at che measurement port and the display shows return loss when che reflection due to the short circuit is subtracted.

The signal transmitted through the device under test is sensed by detector A which is connected either directly to the device via a transformer or through a 3rd waveguide coupler. This improves the match seen by the test device but is not necessary from the point of compensating for coupler variation as 6500 memory capability can calibrate the chrough ifne. Low VSWR coax to waveguide cransformers must be used to reduce measurement uncertainty.

Using the arrangement shown in Fig. 3-15:
(1) Establish reference data for channel A by connecting to measurement port select:-

(2) Establish reference data for reflection on channel B by substituting short circuit at measurement port.

(3) Remove short circuit and insert the device under test. Return loss may then be measured by suberacting memory B from $B-R$ and transmission loss measured by subtracting memory A from $A-R$.

Fig. 3-16 Amplifier 1 dB compression point measurements
This technique uses a ratio between input and outpur powers followed by a relacive output power measurement also including frequency normalization.
(1) With the equipment set up as shown in Fig. 3-16 connect channel A detector directly to the power splitter and ensure that the amplifier is operating in its linear region.
(2) Carry out a ratio measurement selecting A and $-R$:
(3) Normalize the frequency response by selecting:

(4) Insert the amplifier (D.U.T.) between the channel A detector and the power splitter.

Note...
If the amplifier has an output level greater than +16 dBm a suitable attenuator pad should be inserted before the detector.
(5) Measure the amplifier gain thus:

(6) Select a reference point on the display with the brightine control
and reference this point to 00.00 dB by selecting:

(7) Set DATUM to +1 dB , set RANGE to $1 \mathrm{~dB} / \mathrm{div}$. Increase the $R F$ source level until the response at the reference point falls by 1 dB , this indicates the 1 dB compression point.
(8) The actual amplifier output power at this frequency can be measured by selecting channel $A=A$ and reading power at the brightine frequency.

Note...

If an attenuator was included before channel A detector, its value (at the brightine frequency chosen as reference) must be added to the power measured.

There are occasions when the gain or loss of an unknown or test device such as a filter or amplifier needs to be compared with that of a reference device. One technique is as follows (use of channel R is omitted for clarity):
(1) With detector A connected to the RF source select:-

102
A

This serves as a calibration and normalization procedure.
(2) Insert "standard" device between RF source and detector A and select
N
to display response of "standard" device.
(3) This "standard" response is now stored in memory B by selecting

(4) Without detector B connected to channel B input select:-

The display shows B channel at its lowest level without the noise contribution of detector B. Select:-

This subtracts the "standard" trace from the low level in B and it is then re-written into memory B by selecting:-

(5) The test device is now substituted for the "standard" device and displayed as a line by selecting:-

(6) Finally to compare and display the stored "reference" as a histogram and the current test performance as a line in a normalized form select:-

This technique can be used to examine the differential gain or loss between for example matched amplifiers or attenuators. After initialization the procedure is a follows:
(1) Normalize for systems errors by connecting A and B detectors to both arms of a power splitter fed from the RF source and select:

and

(2) The two test devices are then inserted in the lines between the splitter arms and the detectors. One device (e.g. that on Channel A) is then normalized and stored in memory R by selecting:

(3) The other channel is now normalized and the performance of the other device subtracted by selecting:

This display now shows the difference between the two devices.

Control of graticule lines

Vertical graticule lines may be re-instated at sweep widths less than 0.1 GHz . Three methods of achieving this are shown in the following paragraphs.

Scaling factor method.

(1) Select SHIFT and F2 (F2 is selected to avoid eerror' prompts when entering a number where $\mathrm{Fl}>\mathrm{F} 2$)

Prompt
Set Sweeper F2
(2) Measure RF source output frequency with a frequency counter.
(3) Enter this value directly by the keyboard, keeping the resolution required, e.g. 52.47 MHz .

Normal entry :	0.05 GHz
xl0 Resolution :	0.52 GHz
$\times 100$ Resolution :	5.24 GHz
$\times 1000$ Resolution $:$	52.47 GHz

(4) Repeat the procedure for F1.
(5) Note that with $\mathrm{F} 2-\mathrm{Fl}$ difference greater than 0.1 GHz , vertical graticule lines will be present.
(6) The display readout must be scaled down by the factor chosen.

Counter mechod

(1) Select SHIFT and Fl. Enter frequency information in the normal manner e.g. 50 MHz as 0.05 GHz .

(2) Select SHIFT and F2 (MHz) normally in GHz. Graticule lines may not now be present.
(3) To identify a frequency on the display, connect a frequency counter permanently to the RF source output. Then select FREEZE.

The brightline control is now linked to the ramp output of
the manual frequency control. At any point on the display the frequency may be read directly from the counter by varying the brighline control.
(4) If required up to eight markers can then be placed on the screen at frequencies of interest whilst in this mode by pressing the MARKER key.
ERASE

Select NORMAL to continue sweeping

Ten division graticule method.
(1) Select SHIFT and F1. Enter Fl as 0.0 GHz .

(2) Select SHIFT and F2. Enter F2 as 100 GHz .

Prompt
Set Sweeper F2

The display now divides into 10 equally spaced vertical graticules. Because the display shows 0 to 100 GHz frequency range, select SHIFT and SECRET to remove the erroneous frequency information

(3) To read frequency information from the display, connect a counter to the RF source output. Select SHIFT and FREEZE and the frequency at the brightline point con be read to the required resolution.

Apr. 87

Broadband frequency response using a frequency window
The following procedures define two methods of broadband frequency response measurements using a "fixed window" or Δf for examination of response slopes prior to gain equalization.

Sweep generator method.

Fig. 3-17 Broadband measurements using a frequency window
interconnecting diagram

Connect up the equipment as shown in Fig. 3-17 and set the RF source to EXTERNAL operation, connect the $65000-10 \mathrm{~V}$ FIXED RAMP output to the EXT INPUT of the RF source and the frequency counter to one arm of the power divider or coupler.
(1) Set the RF source $C W$ control to the lowest frequency of interest and select the Δf facility.
(2) Select SHIFT and $F 1$ on the 6500 , note the counter reading an adjust the CW control until the desired lowest frequency is displayed. Enter 0 on the keyboard.

(3) Select SHIFT and F2 on the 6500 , note the counter reading and adjust the $R F$ source Δf control until the counter reads the incremental frequency shift required. Enter 100 on the keyboard and the equally spaced graticules are now generated

Prompt
Set Sweeper F2

Select SHIFT and SECRET to erase the frequency information written to the screen and the Δf sweep is now calibrated.

Chap. 3-2
(4) With the measurement detector on channel A connected to the output of the system and the reference detector R, the ratio of the input to output can be displayed and measured on the 6500 .
(5) The DATUM and RANGE may be reset to give values within the test specification or alternative AUTO RANGE may be used to optimize the DATUM and RANGE settings.
(6) By operation MAX and MIN keys, the amplitude values at these points can be measured and the difference in frequency slope measured.
(7) To measure response slopes at any other window position, simply vary the $C W$ control of the sweeper and the display will show the frequency response of the system passing through the "fixed window". Measurements are repeated as above.

Voltage tunable oscillator method

Connect up the equipment as shown in Fig. 3-17 substituting a voltage tunable oscillator (VTO) for the sweeper RF source. Select FM operation on the voltage tunable oscillators and connect the $0-20 \mathrm{~V}$ VARIABLE RAMP output to the external FM input of the VTO, (caution : check that maximum acceptable FM input level is not exceeded).
(1) Set the VTO control to the lowest frequency of interest using the frequency counter.
(2) Select SHIFT and Fl on the 6500. Note the frequency counter reading and enter 0 GHz on the keyboard.

Prompt
Set Sweeper Fl

(3) Select SHIFT and $F 2$ on the 6500. Adjust the VTO CW control to give the required incremental frequency shift as shown on the frequency counter and adjust COARSE (C) and FINE (F) RAMP, 6500 rear panel controls to give the desired incremental frequency display. Re-adjust VTO, C and F controls and also if necessary the 6500 rear panel OFF SET control to maintain the required Fl frequency position. On completing the adjustments enter 100 on the keyboard. Ten equally spaced graticules will be generated

(4) Select SHIFT and SECRET to erase the erroneous frequency information written to the screen. The "fixed window" or Δ is now calibrated and measurements outlined in the "Ten division graticule method" may be carried out.

NOTES

Appendix A

CHARACTERIZATION OF NON-MARCONI INSTRUMENTS DETECTORS

Detectors from manufacturers other than Marconi Instruments may be used if the appropriate correction figures are entered into the 6500 via the [DET CHAR] key. The method described matches the response of an "unknown' detector to that of a 6511 by adjustment of the correction factor and sensitivity factor.

Equipment required

6500

6511
Power splitter specified for operation at 2 GHz
Microwave sweeper capable of producing a levelled power sweep from -15 dBm to at least +10 dBm at 2 GHz (MI 6300 series sweeper recommended). Connecting cables (precision N-type and BNC)

Arrangement

Fig. A-1 Arrangement for characterization of non-MI detectors

Method

(1) With RF power swiched off, connect the equipment as shown in Fig. A-1.
(2) Select [SHIFT][DET] on the 6500. The prompt Enter detectors (ABR) appears. Press [7][1][1][ENTER]to assign:
No correction (initially) to the unknown detector on Channel A, 6511 correction to Channel B (unused) and 6511 correction to the 6511 detector on Channel R.
(3) Select [SHIFT][ZERO] to zero the two detectors.
(4) On the sweeper set a continuous frequency of 2 GHz and a power sweep from -15 dBm to +15 dBm (or maximum levelled power if lower).
(5) Switch RF on. Select $[A][-R]$ on the 6500. A trace of the form shown in Fig. A-2 should be obtained.

Fig. A-2 Response of unknown detector with respect to 6511
The trace represents the difference in response of the unknown detector with respect to the 6511. To match the responses, the correction and sensitivity factors for the unknown detector (currently zero) need to be adjusted so that a horizontal line at 0 dB is obtained.
(6) Select [SHIFT] [DET CHAR]. Starting with a value of -27 dBm , adjust the correction factor for sensor 7 to bring the trace to the horizontal. After each new figure has been entered press [NORMAL] to view the effect on the trace. Note that increasing the negative value of correction factor causes the trace to bend upwards, and vice versa.
(7) When a horizontal line is obtained, the sensitivity factor should be adjusted to shift the line to the 0 dB position. Alternatively, if a 0 dBm reference signal is used (available in MI's 6950 and 6960 RF Power Meters) absolute (rather than relative) accuracy at 0 dBm can be obtained by connecting the unknown detector directly to the power reference, selecting [A], and adjusting sensitivity factor to give a horizontal trace at 0 dBu. Note that increasing the positive value of sensitivity factor shifts the trace upwards, and vice versa.

With the sensitivity and correction factors correctly entered, the sensor can be used on any channel by selecting [DET] and [7] appropriately.

Correction figures for up to 3 non-Marconi Instruments detectors (7, 8 and 9) may be entered. When using a Marconi Instruments 6310 series sweeper the correction figures are held in non-volatile store

Appendix A
Page 2

INDEX
Chap. Page
A

Absolute power measurements	$3-2$	4
Alignment of sweeper frequency coverage with 6500 display	$3-2$	3
Amplifier l dB compression point measurements	$3-2$	12
APPLICATIONS	$3-2$	

B

Brightline and related keys	$3-1$	30
Brightline, rotary control, ΔF key	$3-1$	30
Broadband frequency response using a frequency window	$3-2$	16

C

CALAID key	$3-1$	38
CHARACTERIZATION OF NON-MARCONI INSTRUMENTS DETECTORS	App. A	
Comparison of device performance against a stored reference	$3-2$	13
Connecting to supply	2	2
Control of graticule lines	$3-2$	14

D
$\begin{array}{lrr}\text { Detector specifications } & 1 & 8 \\ \text { DET key } & 3-1 & 36\end{array}$
DET CHAR key 3-1
$-1 \quad 37$
Display characteristics
DISPLAY keys
3-1

EF
Features 1
Frequency range (secting)
Front panel controls 3-1

G

GENERAL INFORMATION
1
GPIB interface (3964-650)
2

I
Initialisation of sweeper 3-
3-2 2
Insertion loss/gain measurements 3-2
INSTALLATION
2

JK
Keyswitch functions
3-1

L

LIMITS key	$3-1$	36
LOCAL key	$3-1$	32

	Chap.	Page
M		
MARKER key	3-1	31
Measurement of gain/loss tracking between similar devices	3-2	14
Measurement of insertion loss/gain	3-2	5
Measurement of return loss	3-2	7
Memory operation	3-1	19
MIN/MAX keys	3-1	31
Miscellaneous secondary functions	3-1	33
MODE keys	3-1	16
Mounting arrangements	2	2
No		
Operating procedure	3-1	13
OPERATION	3-1	
P		
PLOT key	3-1	24
Power range and limits (setting)	3-1	27
Preparation for use	3-1	1
QR		
Rack mounting	2	3
Rear panel controls	3-1	11
S		
Safety testing	2	3
SECRET key	3-1	37
SET keys	3-1	27
Simultaneous return loss and transmission loss	3-2	9
Specification	1	4
STATUS key	3-1	36
STO and RCL keys	3-1	34
SWEEP keys	3-1	22
TU		
Unpacking and repacking	2	1
∇		
Versions and accessories	1	7
W		
Waveguide measurements	3-2	11

2

Zeroing
ZERO key

Chap. Page
List of figures

1-1 Display components 1
3-1 Test Pattern display and self test fault indication 3-1
3-2 Connections to Swept RF Source and Frequency Counter 3-1 2
3-3 Front panel controls
3-1 5
3-4 Rear panel controls
3-1 11
3-5 Typical X-Y plotter presentation 3-1 26
3-6 Sample work sheet 3-1 35
3-7 Calibration aid display 3-1 38
3-8 Auto zero status message
3-2
2
3-9 Absolute power measurements, interconnections
3-2
4
3-10 Insertion loss/gain measurements, interconnections 3-2 5
3-11 Insertion loss measurement display 3-2
6
3-12 Return loss measurement, interconnections 3-2 7
3-13 Return loss measurement display 3-2 $\quad 3$
3-14 Simultaneous return loss and transmission loss display 3-2 10
3-15 Waveguide measurement, interconnections 3-2 11
3-16 Amplifier 1 dB compression point measurements 12
3-17 Broadband measurements using frequency window, intercon. 3-2 16
A-1 Arrangement for characterization of non-MI detectors A
1
A-2 Response of unknown detector with respect to 6511 A
2

List of tables
$\begin{array}{llll}3-1 & \text { Error codes } & 3-1 & 14 \\ 3-2 & \text { Valid memory operations } & 3-1 & 21\end{array}$

AUTOMATIC AMPLITUDE ANALYSER 6500

 GPIB OPERATIONIEEE 488-1978 SH1,AH1,T5,L4,SR1,RL1,DC1,E1

(C) Marconi Instruments Limited 1984 Printed in the UK

Part No. 46881-558S

CONTENTS

```
PRELIMINARIES
    Title page
    Contents
```


CHAPTERS

```
1 General information
2 Installation
3 Operation
4 Applications
APPENDICES
A 6500 firmware Issue 5 and pre-Issue 5 comparison
B GPIB error codes
C 6500 character set and text control codes
D Keyboard codes returned by RK command
E 6500 CRT layout chart
F Standard alphanumeric layouts for single and dual channel displays
G Digital plotter output information
H Sample digital plot
```


GENERAL INFORMATION

CONTENTS

Para.
1 Introduction
General purpose interface bus (IEEE-488/IEC 625)
Interface function capabilities

INTRODUCTION

General purpose interface bus (IEEE-488/IEC 625)

1. The 6500 GPIB interface allows the instrument to be connected to a GPIB controller and other GPIB compatible devices. This manual describes the GPIB commands implemented on 6500 and, where appropriate, gives examples of their use. Programming examples are given for use on Hewlett Packard HP85 and Series 200 controllers. Further information on the general provisions of the IEEE-488 standard and its implementation may be found in the Marconi Instruments GPIB Manual (Part No. H 54811-010P). Familiarity with 6500 LOCAL operation is assumed. See operating manual H 6500, Vol. 1 for details.

Note...
The information contained in this operating manual pertains to 6500 firmware is sue 5. See Appendix A for details of compatibility with pre-issue 5 versions.

interface function capabilities

2. SHl : Source Handshake - complete capability. The source handshake sequences the transmission of each data byte from the instrument over the bus data lines. The sequence is initiated when the function becomes active, and the purpose of the function is to synchronize the rate at which bytes become available to the rate at which accepting devices on the bus can receive the data.
3. AH1 : Acceptor Handshake - complete capability. The acceptor handshake sequences the reading of data bytes from the bus lines.
4. TS : Talker Function - complete capability. The talker function provides the 6500 with the ability to send device dependent messages over the bus to other devices. Unless in TALK ONLY mode the ability to talk exists only when the instrument has been addressed as a talker. The TALK ONLY mode is provided on the 6500 to allow direct interfacing to an intelligent digital plotter.
5. L4 : Listener Function - no LISTEN ONLY function. The Iistener function provides a device with the ability to receive device dependent messages over the bus. The capability exists only when the device is addressed to listen by the controller.
6. SR1 : Service Request Function - complete capability. The service request function gives the 6500 the ability to interrupt the controller and request attention. The 6500 can be enabled to issue the interrupt on the occurrence of a number of a number of different events and returns a STATUS BYTE indicating the source of the interrupt when interrogated by the SERIAL POLL technique. PARALLEL POLLING is not supported.
7. RL1 : Remote/Local Function - complete capability. The remote/local function allows the 6500 to be controlled either locally by the front panel controls, or remotely by device dependent messages over the bus.
8. DCl : Device Clear Function - complete capability. The device clear function is a general reset and may be given to all devices in the system (DCL - DEVICE CLEAR) or only to addressed devices (SDC - SELECTED DEVICE CLEAR). On receipt of $D C L$ or $S D C$ the 6500 performs a software reset, returning the instrument to its power-on state. The software reset includes the following actions :

SELF TEST
CLEAR ALL MEMORIES
SET DETECTOR ZERO AND NULL VOLTAGES TO NOMINAL VALUES
INITIALIZE ALL INSTRUMENT SETTINGS
READ GPIB ADDRESS SNITCH
RETURN 6500 TO LOCAL CONTROL
Note. . .
A self test failure may cause a GPIB interface error condition or suspend GPIB activity. The 6500 must be switched off to clear this condition.
9. El : Bus Driver Type. The GPIB driver devices fitted in the 6500 interface have open-collector, rather than tri-state outputs.

Chapter 2

INSTALLATION

CONTENTS

```
Para.
    l Installation procedure
    2 GPIB Address/TALK ONLY Selection
Fig. Page
    l Interface installation ... ... ... ... ... ... 2
    2 Label positioning ... ... ... ... ... ... 2
    3 Address switch configuration ... ... ... ... ... }
```


INSTALLATION PROCEDURE

1. The procedure described assumes that a GPIB interface is being installed in a 6500 which previously had none fitted. The interface may be installed as follows :
(1) Switch the instrument off and disconnect from power supply.
(2) Remove and discard the rectangular cover plate from the left-hand side of the rear panel. Also remove the instrument's bottom cover. Insert the cable and p.c.b. through the rear panel such that the GPIB connector is on the left-hand side. Using the two retaining screws from the cover plate, secure the GPIB assembly to the rear panel.
(3) Feed the interface cable through the cut-out in the bulkhead metalwork as shown in Fig. 1 and connect the interface plug to SK14 on the 6500 mother board, observing correct polarity.

Fig. 1 Interface instaliation
(4) Add the two supplied self-adhesive labels to the rear panel identifying the GPIB connector and address switch as shown in Fig. 2.

Fig. 2 Label positioning
(5) Replace the instrument's bottom cover.

The instrument is now ready for GPIB operation.

Fig. 3 Address surtch acnfiguration
2. The GPIB address switch is shown in Fig. 3. For normal operation the TALK ONLY switch should be off and the required address should be selected on the five address switch positions using the binary weighted decimal values shown. The interface is supplied pre-set to address 8 . The normal valid address range is 0 to 30 . Before changing the address check your controller manuals for reserved addresses.
3. TALK ONLY mode is activated by placing the TALK ONLY switch in the ON position. This mode is intended for use in a stand-alone configuration with a digital plotter. TALK ONLY must NOT be selected when the instrument is connected to a GPIB system governed by a controller.
4. Any change made to the GPIB address switch will only be recognized by 6500 after a power-on sequence.

Chapter 3

OPERATION

CONTENTS

```
Para.
    Remote operation
    GPIB program codes
    Data entry and terminators
    Reading data from 6500
    11 Command description format
    13 Measurement mode selection
    14 Memory operation
    15 Amplitude scaling
    16 Frequency scaling
    17 Sweep mode selection
    18 Display mode selection
    19 Limit checking facilities
    20 X-Y plotter control
    21 Digital plotter control
    22 Instrument settings control
    23 Brightline positioning
    24 Marker control
    25 Brightline data transfer
    26 Reading status information
    27 Reading display parameters
    28 ASCII measurement transfer
    29 Binary measurement transfer
    30 Text display control
    31 Keyboard control
    32 SRQ facilities
    33 Synthesizer mode
    34 Miscellaneous commands
```


Remote operation

1. On receipt of the Remote Enable (REN) signal from the GPIB the 6500 switches to remote operation, indicated by the LOCAL lamp being extinguished. No instrument settings are changed but all front panel keys except LOCAL are disabled and their functions come under GPIB control.
2. Unless inhibited by the Local Lockout (LLO) message the instrument can be returned to LOCAL control by pressing the LOCAL key or sending the Go To Local (GTL) or Interface Clear (IFC) messages or releasing the Remote Enable (REN) signal.

GPIB program codes

3. All valid GPIB program codes are listed in Table 1 and Table 2.

Table 1 lists those codes which correspond directly to front panel key strokes, while Table 2 lists all others. Note that access to the secondary key functions is achieved by using the primary function code prefixed with 'SH'. 'SH' is treated by the instrument as a program code corresponding to the SHIFT key.
4. Program codes may be combined in a string without individual terminators, although spaces or commas may be included to improve clarity. These will be ignored by the instrument.

TABLE 1
PRIMARY KEY-STROKE COMMANDS

CA/B/R/C	Select channe1 $A / B / R / A \& B$
SLR	Subtract Live Reference (- R)
STA/B/R/C	Store to memory $A / B / R / A \& B$
SBA/B/R	Subtract memory $A / B / R$
U	Change measurement units
$\mathrm{SD}<\mathrm{n}>\mathrm{E}$	Set screen datum dB(m)
$S R<n>E$	Set screen range $d B(m) /$ division
$S S<n>E$	Set start frequency GHz
SP<n>E	Set stop frequency GHz
E	Enter (follows numeric data)
AR	Auto range
EW	Full width sweep (Fl-F2)
DF $<\mathrm{n}>\mathrm{E}$	Sweep about brightline GHz
MX	Set brightline to max point
MN	Set brightline to min point
MK	Marker place/remove
N	Normal sweep mode
AV	Sweep averaging mode
F2	Sweep freeze mode
H	Select histogram display
L	Select line display
P	Enter plot mode

SECONDARY KEY-STROKE COMMANDS (SH = SHIFT)

SHCA/B/R
SHSTA/B/R/C
$S H S D<n>E$
SHSR< $<\boldsymbol{r}>\mathrm{E}$
SHSS<n>E
SHSP<n>E
SHI
SH4
SH5n
SH6n
SH7
SH $8<n>E$
SH9<n>E
SH-
SHAR
SHFWnnnE
SHMK
SHNG
SH. $\langle n\rangle E \ldots, \ldots n\rangle E$

Display memory $A / B / R$
Store average to mem $A / B / R / A \& B$
Set high limit $d B(m)$
Set low limit dB(m)
Set sweeper minimum (F1) GHz
Set sweeper maximum (F2) GHz
Calibration aid
Display instrument status
Store instrument settings
Recall instrument settings
Enable/disable limit checking
Set dB relative (A)
Set dB relative (B)
Secret (blank frequency) mode
Zero detectors
Select detector types
Remove all markers
Set sweep speed
Set detector correction figures (detectors 7,8,9)
six entries in $d B(m)$

BLOCK TRANSEER COMMANDS
$R M A / B / R \quad$ Read ASCII from channel $A / B / R$
SHRMA/B/R
WMA/B/R<a>
SHWMA/B/R<a>
RYA/B/R
SHRYA/B/R
WYA/B/R
SHWYA/B/R
Read ASCII from memory $A / B / R$
Write ASCII to channel $A / B / R$
Write ASCII to memory $A / B / R$
Read BINARY from channel $A / B / R$
Read BINARY from memory $A / B / R$
Write BINARY to channel $A / B / R$
Write BINARY to memory $A / B / R$
BRIGHTLINE CONTROL/DATA TRANSEER COMMANDS
BR Move brightline right
BL Move brightline left
$\mathrm{BP}<\mathrm{i}>\mathrm{E}$
Set brightline position
RP Read brightline position
RA/B/R
Read brightline amplitude $A / B / R$
Read brightline frequency
Write brightine amplitude data
STATUS OUTPUT COMMANDS
RS Read status string
RX Read extended status string
RDA/B/R Read display parameters A/B/R
RDF Read frequency parameters
RMK Read marker positions
RDM
$D P A / B \quad$ Read $H P G L$ string for trace A / B
DPG Read HPGL string for graticule
DPL Read HPGL string for labels
TEXT/KEYBOADD CONTROL COMMANDS

WTtitle\$	Write title to top line of CRT
TX"text"	Write text to CRT
DA	Display alphanumerics only
RK	Read code of last key pressed
XK	Execute last key read by RK

MISCELLANEOUS COMMANDS
SQnnnnn Set SRQ mask
SH2
Enter synthesizer mode
Step in synthesizer mode
SH3
RIn Read instrument settings store
WIn Write instrument settings store

DATA FQRMAT CONVENTIONS USED ABOVE

n	Fixed field digit
<n>	Floating field data (NR2)
<i>	Floating field integer
<a>	ASCII block data (NR2 or NR3)
	BINARY block data
"text"	Any number of valid ASCII bytes contained within
	quotes. Values $0-15$ are used as control codes.

The E command terminates $\langle n>$ and $\langle i\rangle$ data.

Data entry and terminators

5. Some program codes are acted upon immediately, while others require the addition of arguments to quantify their meaning. These codes fall into two groups; those requiring numeric data correctly terminated, and those requiring a single character argument with no terminator. Block transfers are a special case and are discussed separately.
6. Numeric data should conform to NR2 format as defined in IEEE 728-1982 and should be terminated with ' E '. This is treated by the 6500 as a program code for the ENTER key. This technique ensures complete compatibility with manual operation. The allowable range and resolution of the numeric data depends on the type of operation being performed.
7. Program codes requiring the 'E' terminator are :

SD	SET DATUM
SR	SET RANGE
SHSD	SET HIGH LIMIT
SHSR	SET LOW LIMIT
SS	SET START FREQUENCY
SP	SET STOP FREQUENCY
SHSS	SET SWEEPER MINIMUM
SHSP	SET SWEEPER MAXIMUM
DF	SET DELTA F SWEEP WIDTH
SH8	SET dB REL A
SH9	SET dB REL B
*SHFW	SET DETECTOR TYPES
*BP	SET BRIGHTLINE POSITION
WD	WRITE DATA
SH.	SET DETECTOR CHARACTERISTICS
* NR2	format is not used for these commands.

8. Program codes which require a single character argument are :

SH4 STORE INSTRUMENT SETTINGS
SH5 RECALL INSTRUMENT SETTINGS
SHN SET SWEEP SPEED
Note...
The SQ command has a 5 digit argument which does not require the
'E' terminator.

Reading data from the 6500
9. When addressed to talk the 6500 can output data relating to various operating parameters. Some program codes are used to instruct the instrument which data is required. The data will be output by the 6500 when rext addressed to talk. The program codes used to select output data are :

RA/B/R	READ BRIGHTLINE AMPIITUDE $A / B / R$
RF	READ BRIGHTLINE FREQUENCY
RS	READ STATUS
RX	READ EXTENDED STATUS
RMK	READ MARKER POSITIONS
RK	READ KEY CODE
RP	READ BRIGHTLINE POSITION
RDA/B/R	READ AMPLITUDE DISPLAY PARAMETERS A/B/R
RDF	READ FREQUENCY DISPLAY PARAMETERS
RMA/B/R	READ ASCII MEASUREMENT CHANNEL A/B/R
SHRMA/B/R	READ ASCII MEASUREMENT MEMORY A/B/R
RYA/B/R	READ BINARY MEASUREMENT CHANNEL A/B/R
SHRYA/B/R	READ BINARY MEASUREMENT MEMORY A/B/R
DPA/B	READ DIGITAL PLOT STRING TRACE A/B
DPG	READ DIGITAL PLOT STRING GRATICULE
DPL	READ DIGITAL PLOT STRING LABELS
RI	READ INSTRUMENT SETTINGS STORE

10. One of the above commands must be sent before addressing 6500 to talk. The format of the data output depends on the command sent. Some outputs may be read as numeric or string data, others may only be read as string data. In some cases the data is terminated with a CR LF sequence, in others it is terminated with the EOI signal. See individual command descriptions for more detailed information.

Command description format

11. For the purposes of detailed description the comands are divided into functional groups. In each case the detailed description consists of the following parts :

TITLE OF FUNCTIONAL GROUP
LIST OF COMMANDS DESCRIBED (with corresponding keys)
DEFINITION OF COMMAND SYNTAX (with examples)
GENERAL DESCRIPTION OF COMMAND (S)
REFERENCE TO RELATED SECTIONS (where appropriate)
The following conventions are used :

<..> Indicates a compulsory argument

[..] Indicates an optional argument or a front panel key legend
12. Application examples are given for HP Series 200 and, where appropriate, HP85 controllers in Chapter 4. The HP Series 200 range consists at present of 9816 , 9826 , 9836 and 9920 models and the examples given will run on any of these machines. The examples are given in the BASIC language and do not require any Series 200 BASIC extensions or HP85 enhancement ROMs other than the I/O ROM which is necessary for GPIB operation and the Advanced Programing ROM which allows the examples to be presented as sub-programs.
13. COMMANDS DESCRIBED

CA CB CR CC
SLR U
SHCA SHCB SHCR

CORRESFONDING KEYS

COMMAND SINTAX
These commands do not require any arguments.

COMMAND DESCRIPTION

These comands define the fundamental operating mode of the instrument and have the following individual functions :

CA	Select absolute power measurement on channel A
CB	Select absolute power measurement on channel B
CR	Select absolute power measurement on channel R
CC	Select absolute power measurement on channels A\&B
SLR	Subtract live reference (-R)
U	Change measurement units - toggles between $\mathrm{dBm} / \mathrm{mW}$ and $\mathrm{dB} / \mathrm{VSWR}$
SHCA	Display memory A
SHCB	Display memory B
SHCR	Display memory R

RELATED SECTIONS
MEMORY OPERATION (14)
READING STATUS INFORMATION (26)

Memory operation

14. COMMANDS DESCRIBED

STA STB STR STC
SHSTA SHSTB SHSTR SHSTC
SBA SBB SBR

CORRESPONDING KEYS
[STORE]
[STORE AV]
[SUB MEM]

COMMAND SYNTAX
The normal key-stroke arguments corresponding to these commands are built into the commands themselves (i.e. STA is equivalent to the key sequence [STORE] [A]). These commands are the only exception to the general keystroke compatibility policy.

COMMAND DESCRIPTTON

STA	Store trace to memory A
STB	Store trace to memory B
STR	Store trace to memory R
STC	Store traces to memories A and B
SHSTA	Store average to memory A
SHSTB	Store average to memory B
SHSTR	Store average to memory R
SHSTC	Store averages to memories A and B
SBA	Subtract memory A
SBB	Subtract memory B
SBR	Subtract memory R

The validity of memory operations depends on the current measurement mode. Vol. l of the operating manual gives a table of valid memory operations. This table is reproduced below showing valid memory commands corresponding to each measurement mode.
CHANNEL A B $\quad A \quad B B \quad R$

Valid store commands

Valid subtract commands

$[\mathrm{SH}]$ STA	$[\mathrm{SH}]$ STA	$[\mathrm{SH}]$ STC	$[\mathrm{SH}]$ STA
$[\mathrm{SH}]$ STB	$[\mathrm{SH}]$ STB		$[\mathrm{SH}]$ STB
$[\mathrm{SH}]$ STR	$[\mathrm{SH}] S T R$		$[\mathrm{SH}]$ STR

The STORE AV and SUB MEM commands assume that valid data exists in the memory being accessed.

RELATED SECTIONS
MEASUREMENT MODE SELECTION (13)
READING STATUS INFORMATION (26)

Amplitude scaling
15. COMMANDS DESCRIBED

CORRESPONDING KEYS

SD SR
AR
SH8 SH9

[DATUM] [RANGE]
 [AUTO]
 [dB REL A] [dB REL B]

COMMAND SYNTAX
EXAMPLE
SD<DATUM VALUE>E
SD-12.5E
SR<RANGE VALIUE>E
SR1.5E
$A R$ requires no argument
SH8 [dB REL A OFFSET] E
SH9 [dB REL B OFFSET] E
SH820E
SH9-35.5E

COMAAD DESCRIDTION

SD	Set Datum (Range: -99.9 to $+99.9 \mathrm{~dB}(\mathrm{~m})$ Res: 0.1 dB)
SR	Set Range (Range: +0.1 to $+10.9 \mathrm{~dB}(\mathrm{~m})$ Res: 0.1 dB)
AR	Auto Range (selects optimum DATUM and RANGE values)
SH8	Set dB REL A (Range: -99.9 to +99.9 dB Res: 0.01 dB)
SH9	Set $d B$ REL B (Range: -99.9 to +99.9 dB Res: 0.01 dB)

The dB REL commands do not actually alter the amplitude scaling, but the specified offset is added to the measurement data. If no argument is supplied (e.g. SH8E) then the inverse of the current brightline reading is used. This allows the current brightline point to be used as a 0 dB reference without having to enter the required value.

RELATED SECTIONS
READING DISPLAY PARAMETERS (27)

Frequency scaling
16. COMMANDS DESCRIBED

SS SP
SHSS SHSP
FW
DF
SH-
CORRESPONDING KEYS

COMMAND SYNTAX
SS [START FREQUENCY] E
EKAMPLE

SP [STOP FREQUENCY] E
sS2.05E
FW Requires no argument
DF [SWEEP WIDTH]E
SP12.45E

SH- Requires no argument

COMMAND DESCRIPTION

SS Set Start Frequency (Range: F1 to STOP Res: 0.01 GHz)

SP Set Stop Frequency (Range: START to F2 Res: 0.01GHz)
SHSS Set Sweeper Fl (Range: 0 to +126 GHz Res: 0.01 GHz)
SHSP Set Sweeper F2 (Range: 0 to +126 GHz Res: 0.01 GHz)
FW Set START and STOP to current F1 and F2 values
DF Set symmetrical swbep about brightline frequency (Sweep Width Range: F2-F1 Res: 0.01GHz)
SH- Toggle SECRET mode
F1, F2, START and STOP frequency values must always satisiy the following convention:

$$
\text { Fi }<=\text { START }<=\text { STOP }<=\text { F2 }
$$

If no argument is speciried for $F 1$ or $F 2$ no action is taken but the current setting is echoed on the CRT. If no argument is specified for START or STOP the current brightline frequency is used. When the FW command is sent the current START and STOP settings are lost if they are different to Fl and F2.

The SH- command toggles in and out of SECRET mode. In SECRET mode the frequency scaling information is removed from the CRT.

RELATED SECTIONS

READING DISPLAY PARAMETERS (27)

Sweep mode selection
17. COMMANDS DESCRIBED

N

AV
FZ
SHN

CORRESEONDING KEVS

[NORMAL]
[AVERAGE] [FREEZE] [SPEED]

EXAMPLE

SHN5

COMMAND DESCRIPTION

N Select NORMAL sweep operation
AV Select AVERAGE sweep mode
FZ Toggle FREEZE mode
SHN Select sweep speed (Range: 0 to 9 as SPEED menu)
The N command is a general command for returning to NORMAL sweep operation. In addition to its use as an exit from AVERAGE and FREEZE modes, NORMAL can be used to abort CALAID, PLOT and STATUS modes, and any prompted command. On receipt of the N command, the 6500 switches off AVERAGE or FREEZE mode if applicable, resets the CRT display and re-starts the sweep.

The AV command selects sweep averaging (see Vol. 1 for details). Averaging is re-started each time the command is sent.

The FZ command toggles between the current sweep mode and FREEZE mode. If the current sweep mode is AVERAGE the averaging process is not re-started on toggling out of FREEZE.

The argument for the $S H N$ command is a single digit in the range 0 to 9 corresponding to the sweep speed menu numbers. These allow sweep speeds from 70 ms (0) to 20 s (9). The power-on value is 100 ms (1). Note that the 70 ms sweep mode incurs a 50% reduction in measurement resolution.

RELATED SECTIONS
READING STATUS INFORMATION (26)

Display mode selection
18. COMMANDS DESCRIBED

COFRESEONDING KEVS
[HIST]
L
[IINE]

COMMAND SINTAX
These commands do not require any arguments.

COMMAVD DESCRIPTION

H Select HISTOGRAM display mode
L Select LINE display mode
The H and L commands operate on the currently displayed channel(s). The display mode for any channel will only be affected when an H or L comand is executed while that channel is displayed. The display modes for each channel are undefined at power on.

RELATED SECTIONS
MEASUREMENT MODE SELECTION (13)

Limit checking facilities

19. COMMANDS DESCRIBED

SHSD SHSR
SH7
CORRESPONDING XEYS
[HIGH] [LOW]
[LIMITS]

COMMAND SYNTAX
SHSD<HIGH LIMIT VALUE>E
EXAMPLE

SHSR<LOW LIMIT VAIUE>E
SHSD3.72E
SH7 Requires no argument

COMMAND DESCRIPTION
SHSD Set High Limit (-99.99 to $+99.99 \mathrm{~dB}(\mathrm{~m})$ Res: 0.01dB)
SHSR Set Low Limit (-99.99 to $+99.99 \mathrm{~dB}(\mathrm{~m})$ Res: 0.01 dB)
SuS7 Enable/Disable limit checking
Although limit values are always entered in $d B(m)$ limit checking may still be performed in $m W$ or VSWR modes when the limit values will be assumed to be in mW or VSWR.

Chap. 3
Page 10

Limit checking is enabled and disabled with the SH7 command which has a toggle action. The 'enabled' condition is indicated by the letter 'L' displayed in the top left corner of the CRT, immediately above the amplitude units indicator.

Limit checking is performed only on the channel(s) currently displayed. When a limit is exceeded an appropriate warning message is displayed on the top line of the CRT. The 6500 may also be programmed to issue an SRQ on this condition.

RELATED SECTIONS
READING DISPLAY PARAMETERS (27)
READING STATUS INFORMATION (26)
SRQ FACILITIES (32)

X-Y Plotter control
20. COMMANDS DESCRIBED

P

CORRESPONDING KEYS
[PLOT]

COMMAND STMTAX
The P command requires no argument, but invokes a menu driven plot sequence which is described below.

COMMAND DESCRIPTION

Assuming the 6500 is not in 'TALK ONLY' mode (see DIGITAL PLOTTER CONTROL) the P command generates an analog plotter control menu as follows:

```
0 - Plot All
1 - Pen Bottom Left
2 - Pen Top Right
3- Pen to Origin
4 - Draw Axes
5 - Label Axes
6 - Plot
7 - Set Pen Lift
8 - Set Plot Speed
9 - Set Live Y
```

Option 0 causes options 4,5 and 6 to be performed in sequence, producing a plot with labelled axes. Options 1,2 and 3 are used to set up the plotter input scaling. Option 7 is used to set the logical sense of the pen lift output. A secondary menu is generated with the following options :

1 - Normal
2 - Invert
Option 8 of the primary menu allows selection of the plot speed. This is useful when using plotters which suffer from 'overshoot' problems. A plot speed number from 1 to 9 must be entered. The currently selected speed is indicated.

Option 9 allows the user to set up the plotter Y output to drive a chart recorder. A secondary menu is generated :

1 - Off
2 - On
All option numbers are sent over the bus as single ASCII digits. As some of the procedures require some time for execution two methods of ascertaining when the 6500 is waiting for an option number entry are provided. One is an SRQ facility and the other is part of the extended status message.

RELATED SECTIONS
DIGITAL PLOTTER CONTROL (21)
READING STATUS INFORMATION (26)
SRQ FACILITIES (32)

Digital plotter control
21. COMMANDS DESCRIBED

CORRESPONDING KEYS

DPA DPB DPG DPL

COMMAND SYNTAX

These commands do not require any arguments.

COMMAND DESCRIPTION

DPA Read HPGL string for Trace A
DPB Read HPGL string for Trace B
DPG Read HPGL string for Graticule
DPL Read HPGL string for labels
The DPA, DPB, DPG and DPL commands allow the controller to read the HPGL strings associated with trace A, trace B, graticule and labels which would normally be sent directly to the plotter when in 'TALK ONLY' mode. On receipt of one of thee commands the 6500 will output the appropriate strings when next addressed to talk. The strings are terminated with CRLF and the EOI signal. The strings associated with traces are a fixed length of 3418 bytes. The graticule and label strings may vary in length from 350 to 1100 and 150 to 500 characters respectively depending on display content. The strings may be sent directly to a HPGL plotter or stored for later use. Appendix G gives scaling information to allow modifications to be made to the strings (e.g. to add a title).

Digital plot in TALK ONLY mode
The talk only facility allows a digital plotter to be driven by the 6500 in a "stand alone" configuration provided it is compatible with the following HPGL command subset.

DF	Set default
SC	Scale
SR	Set relative character size
PA	Plot absolute
PU	Pen up
PD	Pen down
LB	Label
SP	Select pen*

* Plotters with only one pen may be used although a plotter with two pens is preferable.

The digital plotter facilities are made available as follows:-
(1) Select the plotter to the Listen only mode (see Plotter manufacturer's Instruction Manual for details of this).
(2) Before switching 6500 power on, select the GPIB Address switch to Talk only mode.

Note...
When the 6500 is in the Talk only mode it must not be connected to a controller or to any other GPIB instrument other than a HPGL compatible plotter set to Listen only mode. This is important as a hardware bus conflict could arise. When connecting a 6500 to a controller driven system remember to check that
 the Talk only mode is not selected.
(3) Switch on 6500, press PLOT key which will present the following menu:

```
0 - Plot all
1 - Draw graticule *
2 - Label graticule **
3- Plot
4 - Set live Y ***
```

* Draw graticule, a representation of the 6500 is plotted with the brightline and markers included and distinguishable from the vertical graticule lines.
** Label graticule. The following annotation is added around the graticule:
(i) Sweep speed.
(ii) Vertical scale units.
(iii) Vertical scaling.
(iv) Frequency scaling (except when SECRET mode is selected).
(v) Brightline spot measurements.
(vi) Measurement details.

Two pen colours are used to improve clarity on two channel plots.
*** Live Y. This menu option is duplicated from the analogue X Y plotter menu to allow 'Live Y output' to be selected. See Appendix H for sample of digital. plot.

RELATED SECTIONS
X-Y PLOTTER CONTROL (20)
APPENDIX G and H
22. COMMANDS DESCRIBED

SH5 SH6

RI WI

COMMAND SYITAX
SH5<DESTINATION STORE> SH53
SH6<SOURCE STORE>
RI<SOURCE STORE>
WI<DESTINATION STORE><BINARY DATA>

SH6 1
CORRESFONDING KEYS
[STO] [RCL]

EXAMPLE

RI9
See APPLICATIONS (Chap. 4)

COMMAND DESCRIPTION

SH5 Store current instrument settings to specified store
SH6 Recall instrument settings from specified store
RI Instruct 6500 to send binary data from specified store
WI Write binary data to specified store
In all cases the source/destination store is a number in the range 1-9. SH5 causes the current instrument settings to the specified store. The following parameters are stored :

```
F1, F2, START, STOP
DATUM A, DATUM B, DATUM R, RANGE A, RANGE B, RANGE R
LIMIT CHECKING ON/OFF
HIGH LIMIT A, HIGH LIMIT B, LOW LIMIT A, LOW LIMIT B
dB REL A, dB REL B
SWEEP SPEED
AVERAGING ON/OFF
MARKER POSITIONS
MEASUREMENT MODE (Channels, Memory usage, Units, Etc.)
TEMPERATURE CORRECTION ON/OFF
DETECTOR TYPES
```

Once stored, these instrument settings can be recalled with SH6. The 6500 stores the settings internally as a binary data block. This can be read over the bus with the RI command. The data is sent as a 58 byte string conforming to the block data transfer format specified in IEEE 728-1982 as follows :
\# JBBB.....BBBC
Where : $\# \mathrm{~J}$ indicates a binary transfer format (IEEE 728-1982)
B is an 8 bit binary value
C is a checksum byte
The data can be sent back to any store with the WI command. The data is intended for storage/retrieval only and should not be altered. The 6500 will not accept a data transfer with an invalid checksum byte. Note that in both directions the transfer is terminated by asserting the EOI signal with the last byte.
23. COMMANDS DESCRIBED

BR BL
BP
MX MN
RP $B P<B R I G H T L I N E$ POSITION $>E \quad B P 123 E$

CORRESPONDING KEYS

ROTARY CONTROL
[MAX] [MIN]

EXAMPLE

BR Requires no argument BL Requires no argument

MX Requires no argument
MN Requires no argument RP Requires no argument

COMMAND DESCRIFTION

BR Move brightline one position right
BL Move brightline one position left
BP Move brightline to specified position (Range : 0 to 421)
MX Move brightline to MAX point on displayed trace(s)
\mathbb{N} Move brightline to MIN point on displayed trace(s)
RP Instruct 6500 to output current brightline position
The trace display is divided into 422 brightline measurement positions and 211 physical brightline positions. Brightline control is implemented in terms of measurement position at all times. Thus multiple $B L$ or $B R$ commands will only move the brightline physically on alternate executions, but each execution will move the brightline to a new measurement position.

The RP command causes the 6500 to output the current brightine measurement position as a 3 digit number in the range 0 to 421 terminated with CRLF and EOI.

The 6500 can be programed to issue an $S R Q$ on manual operation of the brightline control when in the remote state.

RELATED SECTIONS

MARKER CONTROL (24)
BRIGHTLINE DATA TRANSFER (25)
SRQ FACIIITIES (32)

Marker control

24.

COMMANDS DESCRIBED
CORRESPONDING KEYS
MK SHMK
[MARKER] [ERASE]
RMK

COMMAND SINTAX
These commands do not require any arguments.

COMMAND DESCRIPTION

MK Place marker at current brightline position
SHMK Erase all markers
RMK Read marker positions
A maximum of eight markers can be placed using the MK command. Markers are placed at the current brightline position and are displayed as vertical lines on the CRT similar in appearance to the brightline itself. Markers can be erased individually by placing the brightline over a displayed marker and executing MK. Alternatively, all markers can be erased with SHMK.

The RMK command causes the 6500 to output a 31 byte string consisting of eight three-digit numbers separated by commas as follows :

NNN , NNN
Each number represents the current display position of a marker in the range 0 to 210. A value of 999 indicates that the marker is not currently in use. The output string is terminated with CRLF and EOI.

RELATED SECTIONS
BRIGHTLINE POSITIONING (23)

Brightline data transfer
25. COMMANDS DESCRIBED

RA RB RR RF
WD
COMMAND SYNTAX
RA Requires no argument
RB Requires no argument
$R R \quad$ Requires no argument
RF Requires no argument
WD<DATA VALUE>E

CORRESPONDING KEYS
-
-

EXAMPLE

COMMAND DESCRIPTION
RA Read channel A amolitude at brightine position
RB Read channel B amplitude at brightline position
$R R$ Read channel R amplitude at brightline position
RF Read frequency at brightline position
WD Write data to displayed channel at brightline position
$R A, R B$ and $R R$ cause the 6500 to output the current brightine amplitude of the A, B or R channels (which do not have to be currently displayed). The

Chap. 3
value is output in current units and has a fixed format :
SDD.DD

```
where S is a sign,
    D is a digit 0-9.
```

RF causes the 6500 to output the current brightline frequency in GHz in the
following fixed format :

```
SDDD.DD
```

The WD command allows amplitude data to be written to the currently displayed trace. The data should conform to NR2 format as defined in IEEE 728-1982 and must be terminated with 'E'. The display must be in FREEZE mode. Data is written to the current brightline position and is assumed to be in current units. When both A and B traces are displayed, the data is written to channel A only.

RELATED SECTIONS
BRIGHTLINE POSITIONING (23)
SWEEP MODE SELECTION (17)

Reading status information
26. COMMANDS DESCRIBED

CORRESPONDING KEYS

RS RX

COMMAND SYNTAX

These commands do not require any arguments.

COMMAND DESCRIPTION
RS causes the 6500 to output a 10 character string containing status information as follows :


```
Units : \(0=\mathrm{dBm} \quad 1=m \mathrm{~m} \quad 2=\mathrm{dB} \quad 3=\mathrm{VSWR} \quad\) M=Memory display
Limit checking : \(0=0 \mathrm{FF} \quad 1=0 \mathrm{~N}\)
Freeze Mode : \(0=0 \mathrm{FF} \quad 1=0 \mathrm{~N}\)
Averaging Mode : \(0=0 \mathrm{FF} \quad 1=0 \mathrm{~N}\)
Sweep Speed.: 0-9 corresponding to menu number
Valid Data flag : \(0=\) Data invalid \(1=\) Data valid
Number of last error detected ( \(00=\) none)
Number of current error ( \(00=\) none)
```

RX causes the output of a 24 character string consisting of the above plus 14 additional characters defined as follows:

6500 Firmware Issue Number
Detector type ABR. Each digit identifies the detector type by the last digit of its type number (i.e. l=6511 4=6514 etc.).
Temperature Correction : $0=0 \mathrm{FF} \quad 1=0 \mathrm{~N}$
Memory status : 0 - All memories null
(may be combined 1 - Memory A valid to give 0-7) 2 - Memory B valid

4 - Memory R valid
Live Y output : $0=0 \mathrm{FF} \quad 1=0 \mathrm{~N}$
Plot Speed : $1-9$ as defined in plot menu
Pen Lift Sense : $0=$ Normal $1=$ Inverted
Plot mode : $0=$ Inactive 1 =Awaiting Command $2=$ Busy
Measurement Mode : 00 - Absolute power
(may be combined 01 - Sub Mem A
to give 00-63) 02 - Sub Mem B
04 - Sub Mem R
08 - -REF
16 - dB REL A
32 - dB REL B
0 - Channel A
1 - Channe 1 B
2 - Channel R
3 - Channels A\&B
4-MEM A
5-MEM B
6-MEM R
7 - CALAID

RELATED COMMANDS
The use of $R S$ and $R X$ is discussed in APPLICATIONS (Chap. 4).

Reading display parameters
27. COMMANDS DESCRIBED

RDA RDB RDR RDF

COMMAND EYNTAX
These commands do not require any arguments.

COMMAND DESCRIPTION
Each of these commands causes the 6500 to output a string containing numeric values separated by commas. The values output are as follows :

RDA	DATUM A,	RANGE A,	HIGH LIM A,	LOW LIM A	(dB)
RDB	DATUM B,	RANGE B,	HIGH LIM B,	LOW LIM B	(dB)
RDR	DATUM R,	RANGE R,	dB REL A,	dB REL B	(dB)
RDF	F1	F2	F START	F STOP	(GHz)
RDM	\triangle MARKER	RIGHTLINE	A, \triangle MARKER	RIGHTLINE	B (dB)

For RDA, $R D B$ and $R D R$ a 27 byte string is output in the following format :
SDD.DD, SDD.DD, SDD.DD, SDD.DD

For RDF a 31 byte string is output as follows :
SDDD.DD, SDDD.DD, SDDD.DD, SDDD.DD

For RDM a string of the form
SDD.DD or SDD.DD,SDD.DD
is output, depending on whether one or both measurement channels are in use.
In each case S indicates a sign, D indicates a digit and the string is terminated with CRLF and EOI.

RELATED SECTIONS

AMPLITUDE SCALING (15)
FREQUENCY SCALEING (16)
LIMIT CHECKING FACILITIES (19)

RMA RMB RMR SHRMA SHRMB SHRMR
WMA WMB WMR SHWMA SHWMB SHWMR

COMMAND SYNTAX

ASCII read commands (prefix R or $S H R$) require no parameters. ASCII write commands (prefix W or SHW) must be followed by a block of ASCII values as described below.

COMMAND DESCRIPTION

RMA	Read ASCII measurement from channel A
RMB	Read ASCII measurement from channel B
RMR	Read ASCII measurement from channel R
SHRMA	Read ASCII measurement from memory A
SHRMB	Read ASCII measurement from memory B
SHRMR	Read ASCII measurement from memory R

In each case the data output consists of 422 values separated by commas forming a 2953 byte string as follows :

```
SDD.DD,SDD.DD, ............ ,SDD.DD,SDD.DD
lst value, ...................,422nd value
```

Where S indicates a sign and D indicates a digit. The string is terminated with CRLF and EOI.

WMA Write ASCII measurement to channel A
WMB Write ASCII measurement to channeI B
WMR Write ASCII measurement to channel R
SHWMA Write ASCII measurement to memory A
SHWMB Write ASCII measurement to memory B
SHWMR Write ASCII measurement to memory R
In each case the command must be followed by 422 data values conforming to NR2 or NR3 formats as defined in IEEE 728-1982 separated by commas and terminated with CRLF, LF only or EOI.

Note that measurements may be transferred to any channel or memory irres pective of whether it is currently being displayed. When writing to a channel the 6500 should be in FREEZE mode in order to retain the data.

RELATED SECTIONS
BINARY MEASUREMENT TRANSFER (29)
ASCII transfers are discussed in APPLICATIONS (Chap. 4).
29. COMMANDS DESCRIBED

CORRESPONDING KEYS
RYA RYB RYR SHRYA SHRYB SHRYR
WYA WYB WYR SHWYA SHWYB SHWYR

CCMMAND SYMTAX

Binary read commands (prefix R or $S H R$) require no parameters. Binary write commands (prefix W or SHW) must be followed by a binary data block as described below.

COMMAND DESCRIPTION
RYA Read binary measurement from channel A
RYB Read binary measurement from channel B
RYR Read binary measurement from channel R
SHRYA Read binary measurement from memory A
SHRYB Read binary measurement from memory B
SHRYR Read binary measurement from memory R
In each case the data output consists of an 846 byte string formatted as follows :
\#IBBBB BBBB
Where \#I indicates a binary transfer format which is defined in IEEE 728-1982. B is an 8 bit binary byte. There are 422 pairs of bytes which contain data values conforming to the 6500 internal 16 bit data format. The string is terminated by asserting the EOI signal with the last data byte.

WYA Write binary measurement to channel A
WYB Write binary measurement to channel B
WYR Write binary measurement to channel R
SHWYA Write binary measurement to memory A
SHWYB Write binary measurement to memory B
SHWYR Write binary measurement to memory R
In each case the command must be followed by a binary data block as described above. The 6500 will only terminate binary data input with the EOI signal which should be asserted with the last data byte. The binary transfer facility is intended for applications where no manipulation of the data is required, although a technique for extracting the measurement values is described in APPLICATIONS (Chap. 4). The main advantage of binary over ASCII transfers is an approximate 5:1 speed improvement. (The actual transfer times depend on the GPIB controller being used - see Chap. 4).

RETATED SECTIONS
ASCII MEASUREMENT TRANSFER (28)
Binary transfers are discussed in APPLICATIONS (Chap. 4).
30. COMMANDS DESCRIBED

WT TX DA

COMMAND SYNTAX

WT <TEXT>\$
TX<"TEXT">
DA Requires no argument
-

EXAMPLE

WTBand Pass Filter\$
TX'Press [ENTER]:"

COMMAND DESCRIPTION

WT is used to write a title to the top line of the CRT (overwriting the measurement mode indicator) with a maximum length of 28 characters. All printable ASCII characters may be used except '\$' which is used as a terminator.

IX may be used to write text anywhere on the 6500 CRT. The 6500 maintains a 'text pointer' similar to a cursor on a VDU. Text written with TX will always start at the current text pointer position. The position of the text pointer is incremented by one column (horizontally) with each character of the text until the end of the current row (column 40) is reached. All subsequent text will overwrite the last character on the row. The text pointer may be manipulated in various ways with ASCII codes 0 to 15 wich are reserved as control codes. A full list of these is given in Appendix C. Control
facilities include :
Text pointer move in any direction
Clear screen/row
Set/Reset tab stops
Enable/Disable flashing characters
All standard ASCII characters plus 16 special characters are available. A table showing these is given in Appendix C. There is no limit to the length of the text but in order to comply with the text transfer format defined in IEEE 728-1982 it must be contained within quotes (").

The DA command switches off all display elements except alphanumerics. Thus text can be written over existing annotation or the CRT can be used simply as a VDU. Appendix E contains a blank CRT layout chart (the CRT format is 24 rows of 40 columns) and Appendix F contains layout charts showing the positions of normal 6500 annotation and messages. Normal display mode may be resumed with the N (NORMAL) command.

RELATED SECTIONS

APPENDICES C,E,F
Text control is discussed in APPLICATIONS (Chap. 4).
31. COMMANDS DESCRIBED

RK XK

COMMAND SYNTAX

These commands do not require any arguments.

COMMAND DESCRIPTION

RK Read last key pressed
XK Execute last key read by RK
The RK command is normally used in conjunction with the 'SRQ on key press' facility (see SRQ FACILITIES) to intercept key presses while the 6500 is under remote control. The 6500 will output a number in the range 0 to 38 indicating which key was pressed. In order to make the interpretation of numeric data entry easier the numeric keys 0 to 9 are assigned key codes 0 to 9. APPENDIX D shows the keyboard layout indicating all the key codes.

When a key code has been read with $R K$ the $X K$ command may be used to make the 6500 execute the procedure associated with that key as though it had been pressed under local control. Using this technique it is possible to inhibit certain keys, or add extra user-prompts and facilities to an instrument apparently operating under local control. These ideas are discussed further in APPLICATIONS (Chap. 4).

RELATED SECTIONS
SRQ FACILITIES (32)
APPENDIX D
32. COMMANDS DESCRIEED

SQ

CCMMAND SYNTAX

SQ<SRQ MASK>

CORRESPONDING KEYS
-

EXAMDEE

SQ10000

COMMAND DESCRTPTION

The SRQ mask allows $S R Q$ interrupts to be enabled/disabled for any combination of five events. The mask consists of a 5 digit ASCII string. Each digit should be either 0 to disable the function or 1 to enable it. The functions are arranged as follows :

When one of the enabled conditions occurs, an SRQ will be issued. The controller should respond with a SERIAL POLL interrogation. The 6500 will then output a STATUS BYTE. The STATUS BYTE is interpreted as follows :

Bit : 76543210

Not used (always 0)
The decimal value of bits $0-3$ is interpreted as follows :

0	Not used
1	Key press
2	Brightline control rotated left
3	Brightline control rotated right
$4-9$	Not used
10	End of sweep
11	Limits exceeded (only if 1 imits enabled)
12	Error condition
13	Plot menu option requirement
$14-15$	Not used

Note...

PARALLEL POLL is not supported in 6500.

RELATED SECTIONS

The use of SRQ facilities is discussed further in APPLICATIONS (Chap. 4).

Synthesizer mode
33. COMMANDS DESCRIBED CORRESPONDING KEYS

SH2 SH3

COMMAND SYHTAX

These commands do not require any arguments.

COMMAND DESCRIPTION.

The Synthesizer Mode commands are provided to allow the use of GPIB programmable frequency synthesizers where no external ramp input facility exists. Synthesizer mode is entered with the SH2 command. The 6500 now operates as normal except that it waits for the SH3 command before making a new measurement. Thus 422 SH3 commands are required to perform a complete sweep. The controller must send appropriate frequency commands to the synthesizer in between each SH3 command execution. All normal measurement modes may be used. Note that some commands (SD, SR, SS, SP, AR, etc.) cause the 6500 to re-start its sweep. The controlling software must take account of this in order to maintain correct frequency tracking between the 6500 and the synthesizer. To exit from synthesizer mode use the N command.

RELATED SECTIONS

An example of Synthesizer Mode operation is given in APPLICATIONS (Chap. 4).

Miscellaneous functions

34. COMMANDS DESCRIBED

CORRESPONDING KEYS

SHAR
[ZERO]
SHFW
[DET]
SH 1
[CALAID]
SH4
[STATUS]

COMMAND SYNTAX
SHAR Requires no argument
SHFW<DETECTOR TYPES>E
SHl Requires no argument
SH4 Requires no argument

COMMAND DESCRIPTION

SHAR performs an AUTO-ZERO operation on the detectors. No r.f. power should be connected during this operation. An AUTO-ZERO operation MUST be performed after power on before any measurements are made. Consult Vol. 1 of the Operating Manual for further details.

SHFW is used to select appropriate error correction for the detector types being used. The argument is a 3 digit number where each number identifies the detector type by the last digit of its type number (i.e. $1=6511 \quad 4=6514$ etc.). The 3 digits identify detector types for channels A, B and R respectively.

SH1 and SH4 are included for the sake of completeness but are not intended for remote operation. SHl invokes the calibration aid facility (which can be aborted with the N command), and SH4 calls up the instrument status display. Both of these facilities are essentially manual functions and the user should consult Vol. 1 of the Operating Manual for further details of their operation.

RELATED SECTIONS
READING STATUS INFORMATION (26)

Chapter 4

APPLICATIONS

CONTENTS

```
Para.
Introduction
HP Series 200 Implementation
HP85 Implementation
Description format of examples
    Example l Valdat
    Example 2 Freeze
    Example 3 Autoz
    Example 4 Synth
    Example 5 Maxmin
    Example 6 Blpos
    Example 7 Mfreq
    Example 8 Dplot
    Example 9 Readi
    Example 10 Writei
    Example l| Reada
    Example 12 Writea
    Example 13 Readb
    Example l4 Writeb
    Example 15 Writet
    Example 16 Keysrq
    Example 17 Plocal
    Binary/ASCII conversions
```


INTRODUCTION

1. This chapter presents a set of example GPIB program routines which are designed to cover some of the common system requirements and to illustrate some of the advanced features of the 6500 GPIB facility. All the examples are presented as sub-programs or functions which may be incorporated directly into the user's programs. For each example an implementation is given for the HP Series 200 controller and, where appropriate, the HP85. All examples are fully commented. The comments (preceded by '!') may, of course, be omitted.

HP SERIES 200 IMPLEMENTATION
2. Currently the Series 200 range of controllers includes the following models:

9816 (216, Model 16)
9826 (226, Model 26)
9836 (236, Model 36)
9920 (220, Model 20)

The example routines will run on any of the above models with BASIC 2.0 installed. No language extensions are required. The example routines are presented as SUB-PROGRAMS or FUNCTIONS which provide a self-contained program context. The routines should be called with parameters where necessary. Parameters must be of the correct type (REAL, INTEGER or STRING). The main program should contain COM statements to match those in the sub-program and should perform variable initialization, I/O path assignments and array/string dimensioning as necessary. GPIB device addresses and status string variables are passed in COM statements. The following conventions have been adopted:

COM /A/ @Analyser	6500 GPIB address
COM /B/ Status $\$$	6500 status string (24 chars.)
COM /C/ @Synthesizer	Synthesizer GPIB address
COM /D/ @Plotter	Plotter GPIB address

Consult the controller manuals for detailed information on programang semantics.

HP85 IMPLEMENTATION

3. The HP85 routines are presented as SUB-PROGRAMS, which require the ADVANCED PROGRAMMING ROM to be installed. This approach was adopted as it allows the routines to be presented in a convenient manner. For use without the AP ROM all the routines may be easily converted to normal BASIC subroutines with the following procedure :
(a) Remove the SUB definition statement.
(b) Remove COM statements or replace with DIM statements if necessary.
(c) Replace SUBEXIT and, where appropriate, SUBEND statements with RETURN.
(d) Replace CALI statements with GOSUB statements to the appropriate line number for the routine being called.

Note that variables which are local to the sub-program will become global when the above procedure is followed.
4. In addition to the $A P$ ROM the following hardware items are required for correct operation :

```
ROM DRAWER
I/O ROM
HPIB INTERFACE
```

For use as sub-programs the routines should be called with parameters where necessary and any COM statements in the sub-program should have matching COM statements in the main program. All variable initialization should be performed in the main program. GPIB addresses and status string variables are passed in COM statements. The following conventions have been adopted :

COM Al 6500 GPIB address
COM S\$[24] 6500 status string
COM A2 Synthesizer GPIB address
COM A3 Plotter GPIB address
Consult the controller manuals for full details of programming semantics.

DESCRIPTION FORMAT OF EXAMPLES

5. In addition to full listings of each implementation a description of each example is given using the following format :

Title and general description
Input requirements (formal parameters)
Output definitions (formal parameters)
Sub-program calls
Special considerations
6. This routine monitors 6500 status until the valid data flag is true. Measurement data becomes invalid under certain conditions (during AUTO RANGE, AUTO ZERO, etc.) and certain operations require data to be valid before they can be performed successfully. GPIB conmands requiring valid data are :
$\left[\begin{array}{lllllll}{[\mathrm{SH}}\end{array} \mathrm{STA} \mathrm{STB} \quad[\mathrm{SH}] \mathrm{STC} \quad \mathrm{FZ} \quad \mathrm{P} \quad \mathrm{MX} \quad \mathrm{MN}\right.$
It is good practice to call Valdat before executing any of these commands.
Input requirements : NONE
Output definitions : NONE
Sub-program calls : NONE

تP85 sub-program

1000 Sur "Valdat"
1010 COM AI
1020 COH S\$[24]
1030 OUTPUT AI ;"RS" ! Tell 6500 to output status
1040 ENTER A1 ; S $\$$!
Read status string

Repeat if data not valid
1060 SUBEND

EP200 Sub-program

10000 sur Valdat
10010 COM /A/ EAnalyser
$10020 \mathrm{COM} / \mathrm{B} / \mathrm{Status} \mathrm{s}$
10030 L00p ! Checking loop
10040 OUTPUT QAnalyseri"RS"
! Tell 6500 to output status
10050 ENTER Analyseristatus\$
! Read status string 10060 ExIT IF Statuss[5,5]=1'

Exit loop if data valid
10070 HAIT . 1
! Else wait 100as
10080 END LDOP
and try again 10090 SUBEND
7. This routine places 6500 into freeze mode. No action is taken if freeze mode is already active.

Input requirements : NONE
Output definitions : NONE
Sub-program calls : Valdat

HP85 Sub-progrom

1000 SUB "Freeze"
1010 COM Al
1020 COM $5 \$[24]$
1030 OUTPUT A1 ; "RS" !
1040 ENTER AI ; S\$!
1050 IF S\$[8,8]="1" THEN SUBEXIT !
1060 CALL "Valdat" !
1070 OUTPUT AI ;"Fl" !
1080 SUBEND
Tell 8500 to output status
Read status string
Return if already in FREEIE oode
Wait for valid data
Place in freEze sode

HP200 Sub-program

10000 Sub Freeze

10010 COK /A/ EAnalyser
10020 COH /B/ Status $\$$
10030 OUTPUT EAnalyser;"RS"
10040 ENTER EAnalyser; Status
Tell 6500 to output status
10050 IF Statuss(8,8]="1" THEN SUBExIT
Read status string
10060 CALL Valdat ! Wait for valid data
10070 OUTPUT AAnalyser;'FZ" ! Place in FREEZE eode
10080 SUgend
8. This routine performs an AUTO ZERO operation and returns with a flag indicating success or failure.

Input requirements : NONE
Output definitions : Series 200 HP85
Error flag ($1=$ failure) see below E
Sub-program calls : Valdat
The Series 200 version of this routine is implemented as a function and should be called by :

Variable=FNAutoz

HP85 Sui-program

```
1000 Sub "Autoz" (E)
1010 COM A!
1020 COM 5$[24]
1030 OUTPUT A1 ;"N"! NORMAL clears any current errors
1040 CALL "Valdat" !
1050 OUTPUT AL ;"SHAR" !
1050 CALL "Valdat" !
1070 IF S5[1,2]=*42* THEN E=1 ELSE E=0)!
1080 SUBEND
```

NORMAL clears any current errors
Wait for yalid data
initiate AUTO IERO
Hait for valid data
Set or clear error flag

HP200 Suk-program

10000 DEF FMAutoz
$10010 \mathrm{COM} / \mathrm{A} /$ annalyser
10020 COK /8/Status\$
10030 OUTPUT EAnalyser; "N"
10040 CALL Valdat
10050 OUTPUT EAnalyser;'SHAR"
10050 CALL Valdat
10070 IF Status\$[1,2]="420 THEN
10080 Fail=1
10090 ELSE
10100 Fail=0
10110 END IF
10120 RETURN Fail
10130 FNEND

NORMAL clears any current error
Hait for valid data
Initiate AUTO ZERO
Wait for valid data
Check for failure
Set fail ilag
! or clear it

Example 4 Synth

9. This routine generates an autoranged sweep using the 6500 GPIB 'synthesizer' mode.

Input requirements :	Series 200	HP85
Start frequency	Fstart	F1
Stop frequency	Fstop	F2

Output definitions : NONE
Sub-program calls: NONE
Note that the AUTO RANGE function requires two sweeps, the first of which is not displayed.

In the example the synthesizer is assumed to accept frequency data in units of 10 kHz (e.g. Marconi 6812). The units conversion statement may need to be altered to suit other synthesizers.

HP85 Sub-progrom

```
1000 SUB "Synth" (F1,F2)
1010 com al
1020 COM A2
1030 OUTPUT AI ;"SS";Fl;"E"! Set start frequancy
1040 OUTPUT AI ;"SP';F2;"E' ! Set stop frequency
1050 DUTPUT AI \(;\) 'SH2" ! Initiate gynthesizer ade
1060 OUTPUT AI ;"AR" ! Initiate AUTO RANGE
1070 GOR \(\mathrm{S}=1\) TO 2 !
1080 WAIT 100!
1090 FOR P=0 TO 421 !
1100 F=FI \(+\mathrm{P} \ddagger(F 2-F 1) / 42!\)
1110 F=INT(F+100000+.5)!
1120 Qutput az ; F !
1130 WAIT 10 !
1140 OUTPUT A1 ; 'SH3' !
1150 MEXT P !
1160 NEXT S
1170 WAIT 100!
1180 OUTPUT AI ;'FI' !
1190 SUBEND
```

Set start frequancy
Set stop frequency
Initiate gynthesizer aode
Initiate AUTO RANGE
Two sweeps required for AUTO
Allon set up
Sweep loop
Calculate frequency
Convert to lokiz units
Jutput to synthesizer
Allom synthesizer to lock.
Stap 6500
End of smeep loop
Allow processing
Freeze display

10000 SUB Synth(Fstart,Fstop)		
10010	COH /A/ AAnalyser	
10020	COH /C/ ESynthesizer	
10030	OUTPUT AAnalyser;"S5";Fstart;"§*	Set start frequency (for display only)
10040		! Set stop frequency (for display oniy)
10050	OUTPUT ZAnalyser;*SH2"	! Initiate synthesizer ade
10060	OUTPUT EAnalyser; "AR"	! Initiate Auto range
10070	FOR Smeepz 1 TO 2	! Two sweeps required for AuTO Range
10080	WAIT .1	! Allow set up
10090	FOR Point=0 fo 421	! Sweep loop
10100	Frequency=Fstart+Pointx(Fstop-Fstart)/421	! Calculate frequency
10110	Frequency=INT(Frequency*1000004.5)	! Convert to lokhz units
10120	OUTPUT ASynthesizar; Frequency	! Jutput to synthesizar
10130	WAIT . 01	! Allow synthesizer to lock
10140	OUTPUT Analyser: ${ }^{\text {a }}$ SH3 ${ }^{\text {a }}$! Step 6500
10150	HEXT Point	! End of smeep loop
10160	NEXT Smeep	
10170	WAIT . 1	! Allow procassing
10180	gUTPUT AAnalyser; 'Fl'	! Fraeze display
10190 SUBEND		

Example 5 Maxmin
10. This routine returns the amplitude and frequency values of the brightine MAX and MIN functions. Markers are placed at the MAX and MIN positions.

Input requirements : NONE

Output definitions :	Series 200	HP85
MAX amplitude	Amax	V1
MAX frequency	Fmax	F1
MIN amplitude	Amin	V2
MIN frequency	Fmin	F2

Sub-program calls : Valdat

HD85 Sub-program

1000 St3 '*axain' (V1, F1, V2, F2)	
1010 coy at	
1020 coh S\$c24]	
1030 CaLL 'Yaldat'!	Wait for valid data
1040 OUTPUT AL ; 'sink' !	Erase existing larkers
1050 OUTPUT A! ; "Mr mk'!	Find Max and place sarker
1060 OUTPUT A! ; 'RA" !	Read amplitude
1070 emter Al ; Y!	
1080 CUTPUT A1 ; RF" !	Read frequency
1090 ExTER AL ; F!	
	Find HIM and place narker
11.0 OUTPut al ; 'RA' !	Read amplitude
1120 EmTER AI : V2	
[130 Output al ; ${ }^{\text {arF* }}$!	Read frequency
1140 EMTER A1 ; F2	
1.50 SUBEND	

HP 200 Sub-program

10000 SUB Maxain(Asax, Fax, Aein,Fsin)
10010 COM /A/ SAnalyser
10020 COM /8/Statuss
10030 CALL Valdst
10040 OUTPUT AAnalyser; "Sthk**

10060 DUTPUT AAnalyzer; "RA"
10070 EXTER Annalyser; Hatax
10060 OUTPUT Analyser;'RF'
10090 ENTER annalyser;feax
10100 CUTPUT SAnalyser; 'HM YK ${ }^{\prime}$
10110 OUTPUT AAnalyEsP; RA'
10120 ENTER EAnalyser;AEin
10130 OUTPUT EAnalyser;"R5"
10140 EHTER EAnalyser;Fain
10150 GUBEND

Chap. 4

Example 6 Blpos

11. This routine positions the brightine at a target frequency. If the target frequency is outside the current START/STOP frequency range no action is taken and the error $f l a g$ is returned true.

Input requirements :
Target frequency
Output definitions :

Error flag
Sub-program calls : NONE

HP85 Sub-program

```
1000 Sus "glpos" (F,E)
1010 COM A1
1020 OUTPUT Al ;"RDF" !
1030 ENTER A1 ; D,D,F1,F2
1040 IF F<F! OR F\F2 THEN E=1 SUEEXIT !
1050 E=0 !
1060 P=INT((F-FD)/(F2-F!)*421+,5)!
1070 DUTPUT A! ;'&P';P;'E"!
1080 SUBEND
```

HP200 Sub-progrom

10000 SUS 21 pos (Tapget,Err_flag)
10010 COH /A/ BAnalyser
10020 OUTPUT EAnalyser;"RDF"
10030 ENTER AAnalyser;Duany, Dunay,Fgtart,Fstop
10040 IF Target<Fstart on Target>Fstof IHEN
! Read start/stop irequencies
! Check target within liaits
Err_flagnl
! Return with flag set if error
10060 SUBEXIT
10070 ELSE
10080 Err_flag=0
10090 END IF
10100 Point $=$ INT(TTarget-fstart)/(Fstop-Fstart)*421t.5) ! Calculate brightline position

10120 SUSEND

Read start/stop frequencies

If invalid F return with error
Reset error flag
Calculate brightline position
Place brightline

[^0]Example 7 Mfreq
12. This routine returns the frequency values for each of the eight markers. Values for non-displayed markers are set to -1 .

Input requirements : NONE
Output definitions :
Series 200 HP85

Marker frequency array
Frequency (*) $F()$
Sub-program calls : NONE
The frequency array should be dimensioned with 8 elements ($0-7$).

HE85 Sub-program

1000 SUB "Mfreq" (F))
1010 COM AI
1020 DIM P(7) ! Array for positions
1030 OUTPUT A1 ; "RDF':
1040 ENTER A1: D, D,F1,F2
$1050 \mathrm{~S}=\mathrm{F} 2-\mathrm{Fl}$!
1060 OUTPUT A1 ; "RMK" !
1070 ENTER AI ; $P(0), P(1), P(2), P(3), P(4), P(5), P(6), P(7)$
1080 FOR M=0 TO 7 !
1090 IF $P(M)=999$ THEN $F(N)=-1$ ELSE $F(M)=P(M) / 210 \leq S+F!!$
1100 NEXT M
1110 SUBERD

TP200 SuD-progrom

10000 SUB Mfreq(Frequency ($\$$))
10010 COK/A/ EAnalyser
10020 ALLOCATE INTEEER POs (7) ! Allocate array for positions
10030 OUTPUT Analyser;"RDF" ! Read start/stop frequencies
10040 ENTER EAnalyser; Dunay, Dunay; Fstart,Fstop
10050 Spanafstop-Fstart
: Calculate frequency span
10060 OUTPUT EAnalyser;"RAK" ! Read marker positions
10070 ENTER BAnalyser;Pos(k)
10000 FOR Marker=0 107 : For each airker
10090 IF Pos(harker)a999 THEN ! Ignore if unused
10100 Frequency KMarker) $=-1$
10110 ELSE
10120 Frequency (Marker) $=$ (Pos (Marker)/210) *SpantFstart \quad Calculate irequency
10130 END IF
10140 NEXT Marker
10150 DEALLOCATE Pos(t) ! Diseard position array
10160 SUBEND

Example 8 Dplot

13. This routine causes the current measurement display to be plotted on an HPGL compatible plotter.

Input requirements : NONE
Output definitions : NONE
Sub-program calls : Valdat
Note that the HPGL strings are transferred directly from the 6500 to the plotter. This eliminates the need for large string variable allocation in the controller. If it was required to modify the $H P G L$ strings in any way then they would have to be read into the controller.

HP85 SuB-program

1000 Sus 'Dolot"	
1010 COM Al	
1020 C0Y S\$[24]	
1030 COM AJ	
1040 A=A1-700!	Find 6500 base address
1050 P=A3-700 !	Find plotter base address
1060 CALL "Valdat" !	Wait for valid data
1070 Output al ; ${ }^{\text {PXP" ! }}$	Read extended status
1080 ENTER A1 ; $5 \$$	
$1090 \mathrm{M}=\mathrm{VAL}(5 \$[11,111)!$	Extract display mode value
	Plot graticule
1110 60Sub 2000	
1120 C $5=\times \mathrm{DPL}$ " !	Plot labels
1130 G0SU8 2000	
	Plot trace A if required
	Plot trace B if required
1160 SUBEXIT	
2000!	Routine to transfer HPGL
2010 OUTPUT A1: C !	Send read coamand to 6500
2020 gend 7 ; URL TALK A LISTEN P !	Set up direct transter
2030 RESUME 7 !	Initiate transfer
2040 STATUS 7,2; S !	Wait for EOI
2050 If NOT BIT (S,3) THEM 2040	
2060 ABORTIO 7 !	Terainate transfer
2070 RETURN	
2080 SUBEND	

10000 Sus Dplot		
10010	COM /A/ Analyser	
10020	COM /8/ Status\$	
10030	COM /D/ EPlotter	
10040	STATUS AAnalyser, 3 ; Ana	! Find 6500 base address
10050	Ana=Ana-700	
10060	STATUS EPlotter,3;Pltr	! Find plotter base adidress
10070	Pltrapltr-700	
10080	CALL Yaldat	! Wait for valid data
10090	OUTPUT EAnalyser; ${ }^{\text {RXX }}$! Read extended status
10100	ENTER Analyser;Statuss	
10110	Mode=Yal 3 Status $5[11,11]$)	! Extract display oode value
10120	Comand5=*DPG"	! Plot graticule
10130	G0Gub Xfer	
10140	Comaands="DPL"	! Plot labels
10150	60Sub xfar	
10160	If Mode〈>1 AND Mode<>S THEN	! Plot trace A if displayed
10170	Commands= ${ }^{\text {d }}$ PA ${ }^{\text {a }}$	
10180	60SUB Xfer	
10190	END IF	
10200	If Modes! OR Mode=3 OR Modess THEN	! Plot trace E if displayed
10210	Comand ${ }^{\text {a }}$ "DFP"	
10220	GOSUB Xfer	
10230	END IF	
10240	SUBEXIT	
10250		
10260	fer:	! Routine to transfer HPGL
10270		
10280	OUTPUT EAnalyser; Conands	! Send read coamand to 6500
10290	GEND T;UNL TALK Ana LISTEN Pltr data	! Initiate direct transfer
10300	REPEAT	! Hait for E0I
10310	Monitor =READIO 71,23)	
10320	UNTIL BIT (Monitor,3)	
10330	ABCRT 7	! Terainate transfer
10340	RETURN	
10350	SUEEND	

Example 9 Readi

14. This routine reads a binary string representing the instrument settings from one of the nine settings stores.

Input requirements :	Series 200	HP85
Source settings store (1-9)	Sto	S
Output definitions :	Series 200	HP85
Binary instrument settings string	Set\$	I\$
Error flag	Err_flag	E

Sub-program calls: Valdat
The binary string is intended for storage/retrieval purposes only. The error flag is set if the source store number is outside the range $1-9$ or if the store specified contained null data. Note the use of the EOI terminator with binary data.

HP8S Sub-program

```
1000 SUB "Readi" (S, \(15, E\) )
1010 COM Al
1020 COM \(35[241\)
1030 IF S<1 OR S \(>9\) THEN \(E=1\) a SUEEXIT! Check validity of store nuaber
1040 output A! ; "N" !
Clear any current error
1050 CALL "Valdat"
1060 OUTPUT A1 ; "al"aVALf(S)! Send R! comeand to 6500
```



```
!080 OUTPUT A1 ; "RS" !
1090 ENTER A1 ; S\$
1100 IF \(5 \$[1,2]={ }^{5} 56^{n}\) THEN \(E=1\) ELSE \(E=0\) ! Set or clear error flag
1110 SUBEND
```

HP200 Sub-program

10000	UB Readi (INTEGER Sto,Seţ,Err_flaq)	
10010	Con /a/ eanalyser	
10020	COn /8/ Statuss	
10030	IF Sto<i or Sto>9 THEN	! Check validity of store number
10040	Err_flagal	
10050	SUBEXIT	
10060	ENO IF	
10070	DUTPUT EAnalyser;'N"	! Clear any current erpor
10080	CALL Valdat	
10090	OUTPUT EAnalyser; Cl "\&VAL\$(Sto)	! Send RI cosmand to 6500
10100	ENTER CAnalyser USINE *\%, -K"; Set\$! Read settings string
10150	DUTPUT EAnalyser; ${ }^{\text {RS }}$ "	! Read status
10120	EMTER AAnalyser;Status;	
10130		! Cheek for null store error
10140	Err_flagal	! Set error flag
10150	ELSE	
10160	Err_flag=0	! or clear it
10170	END IF	
10180	UBEND	

Example 10 Writei
15. This routine sends a binary string (normally obtained using the Readi routine) to one of the nine instrument settings stores.

Input requirements :
Destination settings store Binary settings string

Series 200
HP85
Sto
S
Set\$
I\$

Output definitions :
Series 200
HP85
Error flag
Err_flag
E

Sub-program calls : Valdat
The error flag is set if the specified store is outside the range $1-9$ or if any error occurs during data transfer (e.g. checksum error). Note the use of the EOI terminator with binary data.

HP85 Sub-program

1000 sug "writei" $(S, 1 \$, E)$
1010 COH A1
1020 com Ss[24)
1030 IF $5<1$ or $5>9$ THEN $E=1$ a SuBExIT! Check validity of store number
1040 OUTPUT A1 ; "N"
1050 CALL "Valdat"
1050 CONTROL 7,$16 ; 129$, $\operatorname{NUM}(15[58,583)$!

1080 CONTROL 7,16 ; $2,13,10$!
1090 OUTPUT A1
1100 OUTPUT A1 ;"RS"!
1110 ENIER AI ; $5 \$$

1130 SUEEND

HP200 Sub-progrom
10000 SUE Writei (INTEEER Sto,Sets,Err_flag)
10010 COM /A/ Annalyser
10020 COH/3/Status
10030 IF Sto<1 OR Sto>9 THEN ! Check validity of store nuaber
10040 Err_flag=1
10050 SUBEXIT
10060 END IF
10070 OUTPUT Aanalyser; ${ }^{1} \mathrm{~N}^{\mathrm{A}} \quad$! Clear any current epror
10080 CALL Valdat

10100 OUTPUT EAnalyser
10110 OUTPUT EAnalyser;"RS" ! Read status
10120 EnTER AAnalyser;Status\$
10130 SELECT Status5[1,2]
10140 CASE "52",'53","57","58" ! Check for relevant errors
10150 Err_flaga! ! Set error flag
10160 CASE ELSE
10170 Err_flaga0 !or clear it
10180 END SELECT
10190 SUBEND

Send settings string
Clear any surrent arpor
Set up EOL for 801 on last byte
Send settings string
Restore EOL setting
Ensure teraination it arror
Check for error condition
! Ensure terninator following error

Example 11 Reada
16. This routine reads a measurement trace from 6500 using ASCII block transfer into a numeric array.

Input requirements :	Series 200	HP85
ASCII read command string	Command $\$$	C $\$$
Output definitions :	Series 200	HP85
Measurement data array	Array (*)	A()

Sub-program calls : NONE
The command string may be any valid 6500 ASCII block read command (RMA, SHRMB, etc.). The measurement data array should be dimensioned to 422 elements (0-421).

Note that the $H P 85$ is unable to read ASCII block data directly into a numeric array and so a loop is used to enter each element with an appropriate MAGE statement. This restraint significantly affects transfer times.

HF35 Sub -program

1000 SUB "Reada' (3 , A()	
1010 COM A1	
1020 gutput Al ; C\%	Send comand to 6500
1030 FOR I $=0$ TO 42! !	Enter array with loop
1050 NEXT !	
1060 ENTER AI !	Cosplete teraination of string
1070 SUBEND	

HP200 Sub-progrom

10000 sus Reada (Cosnands, Array (3))
10010 COH/A/ EAnalyger
10020 OUTPUT EAnalyser;Conmand \quad ! Send coseand to 6500
10030 ENTER AAnalyser;Array (\$)
10040 SUBEND

Example 12 Writea
17. This routine sends measurement data from a numeric array to 6500 using an ASCII block transfer.

Input requirements :
ASCII block write command string Measurement data array

Output definitions :
Error flag

Series 200 HP85
Command \$ C
Array (*) A()
Series 200 HP85
Err_flag E

Sub-program calls: NONE
The command string may be any valid 6500 ASCII block write command (WMA, SHWMB, etc.). The array should contain 422 data values (array base 0). The error flag is set if any error occurs during data transfer (e.g. ASCII data overflow).

As with the Reada routine the HP85 implementation requires the use of a program loop to transfer the array elements which significantly increases transfer time.

HF35 Sub-program
1000 SUB "hritea" ($C \$, A(1, E)$
1010 COM Al
1020 CONTROL 7,$16 ; 1$,NUM(",") ! Set up EOL for ',' terainator
1030 OUTFUT AL UEING "K" ; CTEVALF $(A(0))$:
1040 FOR $1=1$ T0 420 !
1050 DUTPUT A1 USING "X" : A(1)
1060 NEXT I
1070 CONTROL 7,$16 ; 2,13,10$ Restore EDL setting
1080 OUTPUT Al USIMG "K"; A(421)!
1090 OUTPUT AI !
Qutput last value
1100 OUTPUT AI ; "RS" !
Ensure termination if error
1110 ENTER A1 ; S $\$$
1120 IF $5 \$[1,2]\rangle$ "OO" THEN $\varepsilon=1$ ELSE $\varepsilon=0$! Set or clear error flag
1130 SUBEND
HP200 Sub-progrom

```
10000 SUB Writea(Conmands,Array(*),Err_flag)
10010 COM/A/ EAnalyser
10020 ALLOCATE Status$[10] ! iamporary string for status
10030 QuTPUT AAnalyser;Conands;Array(t) ! Dutput comand and array
10040 OUTPUT EAnalyser ! Ensure teraination if error
10050 DUTPUT EAnalyser;"RS" ! Read status
10060 ENTER RAnalyser;Status*
10070 SELECT Statuss[1,21
10080 CASE "50", "51","52","53","54" ! Check for relevant mrrors
10090 Err_flag=! ! Set error flag
10100 CASE ELSE
10110 Err_tlag=0 ! or clear it
10120 END SELECT
10130 DEALLOCATE Status% ! Discard status gtring
10140 SUBEND
```

Example $13 \operatorname{Re} a d b$
18. This routine reads measurement data into a string using binary block transfer.

Input requirements :	Series 200	HP85
Binary block read command string	Command $\$$	C $\$ 7$
Output definitions :	Series 200	HP85
Binary measurement string	Bdata\$	B\$

Sub-program calls : NONE
The command string may be any valid 6500 binary block read command (RYA, SHRYB, etc.). The binary data string should be dimensioned to 846 characters. Note the use of the EOI terminator with binary data.

HP85 Sub-program

1000 sub "Readb" (C5,3\$)
1010 com Al
1020 OUTFUT AI ;CS ! Send command to 6500

1040 SUBEND

HP200 Sub-program

10000 SUB Readb(Commands, Bdata\$)
10010 COM /A/ Analyser
10020 OUTPUT EAnalyser;Comand \quad ! Send comand to 6500
10030 ENTER AAnalyser USING "\%, -K"; Bdatas ! Read BINARY data into string 10040 SUBEND

Example 14 Writeb
19. This routine sends binary measurement data (usually acquired with the Readb routine) to 6500.

Input requirements :	Series 200	HP85
Binary block write command string	Comand $\$$ Binary measurement data string	C $\$ 9$
Output definitions :	Series 200	HP85
Error flag	Err_flag	E

Sub-program calls : NONE
The command string may be any valid 6500 binary block write command (WYA, SHWYB, etc.). The measurement data string should contain l6-bit binary data for 422 measurements preceded by the correct block format header. The error flag is set if any error occurs during data transfer. Note the use of the EOI terminator with binary data.

HP85 SuB-orogram

1010 COM Al	
1020 CONTROL 7,16; 129, NUM (35 [846,8461)!	Set up EOL for EOI on last byte
1030 OUTPUT Al USING "K" ; [5885 [1,845]!	Send crmand and data
1040 CONTROL 7,$16 ; 2,13,10$	Restore EOL setting
1050 OUTPIT A1 !	Ensure teraination if error
1060 OUTPUT A1 ; "RS" !	Check for error condition
1070 ENTER AL ; S\%	
1080 IF $55\left(1,2 \mathrm{~J}>^{*} 000^{*}\right.$ THEN $\mathrm{E}=1 \mathrm{ELSE} \mathrm{E}=0$!	Set or elear errer flag
1090 Subend	

HP200 Sub-progrom

10000	UB Writeb(Conatas , Bdata\$,Err_flag)	
10010	Con /a/ Annalyser	
10020	allacate Statugstios	! Tenporary string for status
10030		! Output comand and data
10040	OUTPUT EAnalyser	! Ensure tersination if error
10050	OUTPUT EAnalyser; ${ }^{\text {a }}$ (${ }^{\text {c }}$! Read status
10060	ENTER Analyser;Statuss	
10070	SELECT Status\$[1,2]	
10080	CASE '51', $51{ }^{\prime \prime}, 5{ }^{\prime \prime}$! Check for relevant errors
10090	Err_flsge!	! Set error flag
10100	CASE ELSE	
10110	Err_flag=0	! or clear it
10120	END SELECT	
10130	DEALLOCATE Statuss	! Discard status string
10140	UBEND	

Example 15 Writet

20. This routine uses the $T X$ command to position text at any location on the 6500 CRT.

Input requirements :
X text start location
Y text start location Text string

Series 200 HP85
Tabx X
Taby Y
Text\$ T\$

Output definitions : NONE
Sub-program calls: NONE
The X location should be in the range $1-40$ and the Y location should be in the range 1-24. The maximum text length will depend on the X start location but should not be more than 40 printable characters. The routine does not switch off any other display elements. This can be performed by the main program with the DA command if required.

HP85 SuD-progrom

1000 3U8 "hritat" (x,y, T5)	
.010 CaM Al	
1020 Dim S5[80]!	String for compilation
	Position counters
	Set up command with TP hose code
!050 Y! $=Y$!	Add TP down codes
1060 IF Y1=1 THEN 1100	
1070 S $5=5 \$ 8 C 4 R \(10)	
1080 YI=Y1-1	
1090 G070 1060	
$1100 \times 1=\times$!	Add TP right codes
1110 IF X $1=1$ THEN 1150	
1120 35=5\%\%CHR\$(7)	
$1130 \times 1=\times 1-1$	
114060701110	
	Add text and close quotes
1160 OUTPUT Al ; $5 \$$	Send complete comand to 6500
1170 SUBEND	

10000 SUB Writet (INTEGER Tabx, Taby, Texts)		
10010	COM /A/ AAnalyser	
10020	ALLOCATE String\$[80]	! Teaporary string for compilation
10030	INTEGER XPOs,Ypos	! Position counters
10040	String\$="TX"\&CHR\$(34)\&CHR\$(1)	! Set up consand with TP hame code
10050	Ypos=Taby	! Add required nusber of tP down codes
10060	WHILE Ypos>1	
10070	String\$xStringStCHR\$(10)	-
10080	YposzYpos-1	
10090	END WHILE	
10100	Xpos=Tabx	Add required number of TP right codes
10110	WHILE Xpos)1	
10120	String \ddagger String $\$ 4 \mathrm{CHR}$ (7)	
10130	xpos=xpos-1	
10140	END WHILE	
10150	Strings=String\$4Text\$2CHR\$(34)	! Add text and close quotes
10160	QuTPUT CAnalysar;String\$! Send complete conmand to 6500
10170	DEALLACATE String\$! Discard compiled string
10180	ubend	

21. This routine sets up SRQ on front panel operation and waits for an interrupt to occur. The routine returns a numeric value indicating a key press, brightline movement or invalid SRQ condition.

Input requirements : NONE

Output definitions :	Series 200	HP85
Front panel code	see below	K

Sub-program calls : NONE
The Series 200 version of this routine is implemented as a function and should be called with :

Variable=FNKeysrq
The value returned will be in the range -1 to 40 . A value of -1 indicates that the SRQ received was not generated by 6500. Values 0 to 38 represent front panel keys as defined in Appendix D. Values 39 and 40 indicate brightline left and right respectively.

HP85 Sub-ərogram.

1000 SUB "Keysrq" ${ }^{(K)}$	
1010 COM A1	
$1020 \mathrm{~K}=-2$!	Praset code value
1030 Qutput A1 ; 3600010 "!	Get up 6500 SRE a ask
1040 ON INTR 7 gisua 1120!	Set up controlier interrupts
1050 ENABLE INTR 7;8	
1060 IF K< -2 $^{\text {THEN 1080 }}$	Wait for valid code
1070 60T0 1060	
1080 OUTPUT A1 ; ${ }^{\text {S } 8000000 * ~}$	Disable 6500 SRQ
1090 OFF INTR 7 !	and controller interrupts
1100 SUBEXIT!	Exit with code
1110	SRO service routine
1120 Status 7,1; S!	Reset interface interruot
$1130 \mathrm{~s}=5 \mathrm{OLLL}(\mathrm{Al})$!	Fetch status byte froa 6500
1140 IF NOT BIT (S,6) THEN $K=-1$ Q RETURN :	Check SRQ active
1150 Sas-64!	Mask SRQ bit
1160 IF Sく>1 THEN 1200	
1170 OUTPUT AI ; "RK" !	If key-press
1180 ENTER AI ; K !	Read key code
1190 RETUR !	and raturn
1200 IF $\mathrm{S}=2$ THEN $\mathrm{K}=39$ a RETURN	If BL left set code=39
1210 If $\mathrm{S}=3$ THEN $\mathrm{K}=40$ R RETURN!	If BL right set $\mathrm{K}=40$
$1220 \mathrm{k}=-1$!	This should never occur
1230 RETURN	
1240 SUPEND	

10000 DEF FNKeysta		
10010	COK /A/ Annalyser	
10020	Codes-2	! Preset code value
10030	OUTPUT EAnalyser;'S800010"	! Set up o500 SRQ ask
10040	ON INTR 7 gosub gervice	! Set up controller interrupts
10050	ENABLE INTR 7;2	
10060	HHILE Code=-2	! Wait for valid code
10070	END WHILE	
10080	OUTPUT AAnalyser;"S800000"	! Disable 6500 SRQ
10090	OFF INTR 7	$!$ and controller interrupts
10100	RETURN Code	! Exit with code
10110		
10120	ervice:	! SRQ service routine
10130		
10140	Sbyte=SpOLL (AAnalysar)	! Fetch status byte froa 6500
10150	IF NOT BIT(Sbyta, 6) THEN	! Check SRQ active
10160	Codes-1	! Indicate no SRQ with negative code
10170	heturn	
10180	END IF	
10190	Sbyteasbyte-64	! Mask SRQ bit
10200	SELECT Sbyte	! Exanine status byte
10210	CASE !	! If key-press fatch key code
10220	OUTPUT AAnalyser;*RK"	
10230	EHTER Analyser; Code	
10240	CASE 2	! If BL left set code=39
10250	Code=39	
10260	CASE 3	! If BL right set codes 40
10270	Coder 40	
10280	CASE Else	! This should never occur
10290	Code=-1	
10300	END SELECT	
10310	RETURN	
10320 FNEND		

22. This routine implements a 'pseudo-local' mode of operation where the instrument appears to be operating under local control, but is in face under remote control. This is achieved by intercepting all front panel operations with SRQ interrupts and simulating the operations performed with GPIB conmands. The routine illustrates the use of the $X K$ command. A key code value is supplied to the routine which is used as an exit code. For example if the value 16 was supplied control would revert to the main program when the LOCAL key was pressed. A status code is returned indicating exit due to a non-6500 interrupt.
23. A square block is written to the top left of the CRI to indicate 'pseudolocal' operation. When the exit code is recognized a housekeeping routine is performed to ensure that the instrument is left in a predictable state. In some cases the exit procedure involves waiting for valid data or the end of a plot function. During this waiting period the indicator is caused to flash. The indicator is removed on leaving the routine.
24. Due to speed limitations an HP85 version of this routine is not presented, although it is technically feasible to implement.

Input requirements :
Exit code
Output definitions :
Series 200
Exit_code
Series 200
Status code ($0=$ normal, $1=$ non-6500 SRQ) Exit_status

Sub-program calls : NONE
The Exit code should be in the range $0-38$ and represents a key code as defined in Appendix D.
25. This routine is not intended to be a solution to any specific system requirement but illustrates the extent to which the front panel SRQ facility may be used. Many useful additions could be made to the routine. Here are some examples :

Sending previously acquired normalization data when frequency limits are changed.

Switching off RF power when AUTO ZERO is pressed.
Performing automatic digital plots when PLOT is pressed.
Modifying CRT annotation.
Adding extra operator prompts and instructions.
Implementing 'menu' operation.

```
10000 SUB Plocal (Exit_code,Exit_status)
10010 COM /A/ QAnalyser
10020 ALLOCATE Statussi24] : Tesporary string for status
10030 iNTEGER Sh_flag :Shift key flag
10040 Indi=$z"TX"$CHR$(j4)&CHR$(1)&CHRS(127)&CHR$(34) TX string for mode indicator
10050 Ex:ts=lndicई ! ik string for exit indicator
10060 Exit$[5,5]={HR$1255)
10070 \tilde{emovj=lndics ! TM string to resove indicator}
10080 Reaovs[5,5]=` *
10090 OUTPUT ZAnalyser;'SQ00010" : Set up 6500 SRQ asgk
10100 OUTPUT GAnalyser;indic% ! Dispiay indicator
0110 Sh_flagai) : Pre-set shift flag
10120 !------------------------------------------------------
10130 LOOP ! MAIN LOOP
l0140 GOSUB Fatch_key ! Fetih key cooe
10150 EXIT IF Key_code=Exit_code OR Key_code=-! ! Leave if EXIT key pressed or non-6500 SRQ
10160 SELECT Key_code
Examine key code
CASE -1
            Comand\xi="0" :Dumay comand if not 6500 SRQ
            CASE 20
                Sh_flag=NOT Sh_flag ! Toggle shift flag
                    Comeanj$='SH'
        CASE ELSE
            Commanos=*xk" Execute all other keys
        END SELSCT
        IF Sh_flag aND Comands(`SH" THEN
            Command{="SH"&Comands | Ensure corract SHIFT operation
        END IF
        OUTPUT AHnalyser USTNG "#,K";Comands ! Send coemand to 6500
        OUTPUT RAnalyser:indics !Re-nrite indicator
        If Sh_flag THEN
    Shift flag set contingency
            If Coamand$\>`SH" THEN
        Comands reset SHIFT state
                Sh_4lag=0
            ELSE
                    OUTPIT amnalyser USING "#,K";"SH" : Send SHIFT to retain mode
            END IF
        END IF
        END LOOP
        !-------------------------------------------------------
        ExIT housekeeping.......
            10390 OUTPUT EAnalyser:Exitf
        Change to flashing indicator
            loro outur analyser;an
        ENTER BAnalyser;Statuss !Read status
        [F Status$[1!,1!}="7" OR Status$(14,14]='!" THEN ! If in CALAID or PLOT menu
        OUTPUT EAnalyser;'N' ! Clear with NORMAL
        ELSE
            IF Status{[14,14]="2" THEN : If PLJT routine active
            REPEAT ! wait until finished
                    WAIT .1
                    Output EAnalyser;"&X"
                    ENTER RAnalyser;Status$
            UNTIL Status$(14,14!='1'
            guTfut sanalyser:*N" : Elear mith nornal
        ELSE
            IF Statuss[5,5]=~0" THEN ! Wait for valid data
                    REPEAT
                    WAIT :I
                    OUTPUT EAnalyser;"RX"
                    ENTER ZAnalyser;Gtatus%
                UNTIL Status$(5,5]='!"
            ENO IF
```

sub-program 2

10600		! If not in freeze
10610	If Status5C10,10]="K" THEN	! Check for memory display
10620	OUTPUT EAna!vser; "N"	! Clear with NORMAL
10630	Else	
10640	OUTPUT EAnalyser;"FIFZ"	! Prompts cleared by toggiing FREELE
10650	END If	
10600	END If	
10670	END if	
10680	END IF	
10670	OUTPUT EAnalyser;"900g000"	[Reset 6500 SRQ asjk
10700	OUTPUT EAnalyser;Remors	! Remove indicator
10710	deallocate Statuss	! Discara status
10720	IF Key_code=-: THEN	! Sat Exit status
10730	Exit_status=1	
10740	ELSE	
10750	Exit_status=0	
1976)	END IF	
10770	SUBEXIT	! Exit fron routine
10790		
10790	fetch_key:	! Keyboard control routine
10800		
10810	Key_code=-2	Praset key code
10820	ON INTR 7 gosus Service	1 Set up controller interrupts
10830	ENABLE INTR 7;2	
10840	WHILE Key _code $=-2$! Hait for valid key code
10850	END HHILE	
10860	OFF INTR 7	! Disable interruots
10870	RETURM	Return with key code
10880		
10890	ervics:	! SRQ service routine
10900		
10910	Sbyte=SPOLL (8Analyser)	! Fetch 6500 status byte
10920	Sbyte=Sbyte-64	! Mask SRQ bit
10930	SELECT Sbyte	! Examine status byte
10940	CASE 1	! If key press
10950	OUTPUT EAnalyser USING "\$,K"; ${ }^{\text {RKM }}$! Read key code
10960	ENTER EAnalyser;Key_code	
10970	CASE 2	! If brightline left
10980	GOSUB Read joes	! Find current position
10990		! Execute al if valid
11000	IF Sh_flag THEN OUTPUT AAnalyser USING "\%, K^{\prime} "SH"	! Re-assert SHIFT if necessary
11010	CASE 3	! If brightline right
11020	GOSUB Read_pos	! Find current position
11030		! Execute BR if valid
11040		! Re-assert SHIFT if necessary
11050	CASE ELSE	! If non-6500 SR8
11060	Key_code=-1	! Return invalid XEY CODE
11070	EMD SELECT	
11080	If Key_codes ${ }^{\text {-1 }}$ Then Emable INTR 7	Re-enable interrupts if valid key cooe
11090	RETURN	and return
11110	ead_005:	Read current brightline position
11120		
11130		
11140	EMTER EAnalyser;Blpos	
11150	RETURN	
11160	JBEND	

Binary/ASCII conversions

27. The binary and ASCII measurement transfers illustrated in examples 11-14 have different areas of application, but it may be desirable in some cases to convert from one format to the other. Two routines are presented which perform these conversions and will run on both the HP Series 200 and the HP85 computers.

The first example illustrates conversion from binary to ASCII. Previously acquired binary data is assumed to be in the string $B \$$ and the target array is A which must be dimensioned with 422 elements (base 0).

The second example illustrates conversion from ASCII to binary. Previously acquired or generated ASCII data is assumed to be in the array A and the target string is $B \$$ which must be dimensioned with 846 characters.

Essentially the routines are manipulations in 2 's complement arithmetic. Note, however, that the sign bit is 0 for a negative value in 6500 internal format.

Binary string to numeric array conversion

```
1000 FOR I=0 00 421
1010 H=NUM(B5(1*2+4,i*2+4])
1020 L=NUM(BS[i*2+3,1*2+3])
1030 N=L+M*256
1040 IF N>32767 THEN N=N-65536
1050 A(I)=-N/256
1060 NEXT I
```

Numeric arroy to binary string conversion

Appendix A

6500 FIRMWARE* ISSUE 5 AND PRE ISSUE 5 COMPARISON

1. The dB REL commands (SH8 and SH9) now require the E terminator following an optional numeric argument. With pre-issue 5 versions these commands did not use any arguments.
2. The brightline frequency value output following the $R F$ command is now in GHz rather than Hz . This gives compatibility with the frequency input commands, which all assume GHz units.
3. The brightline amplitude values output following the $R A, R B$, or $R R$ commands are now rounded to two decimal places. With pre-issue 5 versions three decimal places were output, despite the resolution limitation of $1 / 256 \mathrm{~dB}$.
4. The interpretation of bits $0-3$ of the serial poll status byte has changed. With pre-issue 5 versions decimal values of $1-9$ were interpreted as numeric key presses 1-9. The new interpretation (see SRQ FACILIIIES - section 32) coupled with the $R K$ command allows $S R Q$ interrupts on any key press or brightline movement.
5. The following commands are not available with pre-issue 5 versions :

RMA	RMB	RMR	RYA	RYB	RYR
SHRMA	SHRMB	SHRMR	SHRYA	SHRYB	SHRYR
WMA	WMB	WMR	WYA	WYB	WYR
SHWMA	SHWMB	SHWMR	SHWYA	SHWYB	SHWYR
RDA	RDB	RDR	RDF	RI	WI
RX	RMK	RP	RK	XK	DA
TX	DPA	DPB	DPG	DPL	

*Firmware is the term given to the instrument's internally fixed operating system.

Appendix B

GPIB ERROR CODES

Meaning

Attempt to move brightline outside valid area (positions 0-421) using the BL, BR or BP commands.

ASCII date in $W M$ transfer outside valid range (+/-99.99).
Format error - illegal character in $W M$ ASCII transfer data string.
Premature termination of WY, WM or WI transfer.
No termination of WY, WM or $W I$ transfer.
Listen buffer overflow (may be caused by absence of separators between ASCII values in W M transfer).

Argument to RI or WI command outside valid range (1-9).
Attempt to read from a 'null' store with RI.
Format error on WI transfer block header.
Checksum error on WI transfer.
Attempt to read an HPGL plotter control string (DPA, DPB, DPG or DPL commands) when in CALAID mode.
*These commands cause the operation to be aborted until receipt of a valid SR2/3 terminator [CR] IF or EOI. See IEEE 728-1982 for full definition of terminators.

Appendix C

6500 CHARACTER SET AND TEXT CONTROL CODES

CONTROL CODES

Character codes 0 to 15 are not displayed but are used as control codes in the following manner :

Code \quad Function (TP $=$ Text Pointer $)$

0	Ignored.
1	Move TP to top left of screen (Row l, Column 1).
2	Clear current row and move TP to column 1.
3	Clear text from TP to end of current row.
4	Set TAB at current TP column.
5	Reset TAB at current TP column.
6	Clear all tabs.
7	Move TP one position right unless at column 40.
8	Move TP one position left unless at column 1.
9	Move TP to next TAB position or column 40.
10	Move TP one position down unless on row 24.
11	Move TP one position up unless on row 1.
12	Clear all text and move TP to top left of screen.
13	Move TP to column 1 of current row.
14	Enable flash mode for subsequent characters.
15	Disable flash mode.

KEYBOARD CODES RETURNED BY RK COMMAND

10	11

7	8	9	20
4	5	6	25
1	2	3	
35	0	36	
	37		

21
26
21

Appendix E
6500 CRT LAYOUT CHART

STANDARD ALPHANUMERIC LAYOUTS FOR SINGLE AND DUAL CHANNEL DISPLAYS

Appendix G

DIgITAL PLOTTER OUTPUT INFORMATION

PLOTTING BCUNDARY
GRATICULE (BRIGHTLINE WINDOW
650, 270 (273)
GIGITAL FLOT SCALING

B8,15(12)

0,0

The plotting area is scaled as 512×320 user units.
The character size is set to: $\quad 1.456 \%$ of vertical scale
2.000% of horizontal scale.
Starting co-ordinates of labels:

```
Units
    0,293
Sweep Speed
    429,293
Start Frequency
    66, 0
Brightline Frequency
221, 0
Stop Frequency
440, 0
Datum 1
Datum 2
Top Line
Second Line
```

Appendix H
SAMPLE DIGITAL PLOT

EQUIPMENT 6500
TITLE Automatic amplitude analyzer

EARLIER CHANGES
APPLICABLE No ne

MANUAL CHANGE

To improve noise immunity and common mode rejection of the signal channel, capacitor C37 (100 pF) on ACl 2 is no longer fitted. Disregard references to C37 in the parts list (Chap. 6, para. 15) and on the circuit diagram (Chap. 7, Fig. 8).

AUTOMATIC AMPLITUDE ANALYSER

6500
Including Option 6500-001 (GPIB Interface)

AMENDMENT RECORD

The following amendments are incorporated in this manual.

Amendment No.	Date	Issued at Ser. No.
Commencing	Jan. 83	100
Am. 1	Aug. 83	265
Am. 2	Jun. 84	365
Am. 3	Feb. 86	540
Am. 4	May 87	664

(C) Marconi Instruments Ltd. 1984
Printed in the UK

```
Part No. 46881-559W
Print code \(F\) - 11/87, MI 0.35c
```


CONTENTS

PRELIMINARIES

```
Title page
Contents
Notes and Cautions
```


CHAPTERS

```
1 General information
2 Installation
3-1 Operation
3-2 Applications
4 Technical description
5 Maintenance
5-1 Detector maintenance (6511/6512)
5-2 Detector maintenance (6514)
6 Replaceable parts
7 Servicing diagrams
8 Modifications and supplements
```

These chapters are contained in a separate Operating Manual Vol. 1.

HAZARD WARNING SYMBOLS
The following symbols appear on the equipment :

Symbo1
Type of hazard
Static sensitive device Dangerous voltage present Supply voltage
Δ
Δ
Δ

Supply voltage
Reference in manual

Vol. 2 Page (iv)
Vol. 2 Page (iii)
Vol. 2 Page (iii)

Note ...
Each page bears the date of the original issue or the code number and date of the latest amendment (Am. 1 , Am. 2 etc.). New or amended material of technical importance introduced by the latest amendment is indicated by triangles positioned thus \rightarrow..... 4 to show the extent of the change. When a chapter is reissued the triangles do not appear. Any changes subsequent to the latest amendment state of the manual are included on inserted sheets coded $\mathrm{Cl}, \mathrm{C} 2$ etc.

NOTES AND CAUTIONS

ELECTRICAL SAFETY PRECAUTIONS

This equipment is protected in accordance with IEC Safety Class 1. It has been designed and tested according to IEC Publication 348, 'Safety Requirements for Electronic Measuring Apparatus', and has been supplied in a safe condition. The following precautions must be observed by the user to ensure safe operation and to retain the equipment in a safe condition.

Defects and abnormal stresses
Whenever it is likely that protection has been impaired, for example as a result of damage caused by severe conditions of transport or storage, the equipment shall be made inoperative and be secured against any unintended operation.

Removal of covers
0 Removal of the covers is likely to expose live parts although reasonable precautions have been taken in the design of the equipment to shield such parts. The equipment shall be disconnected from the supply before carrying out any adjustment, replacement or maintenance and repair during which the equipment shall be opened. If any adjustment, maintenance or repair under voltage is inevitable it shall only be carried out by a skilled person who is aware of the hazard involved.

Note that capacitors inside the equipment may still be charged when the equipment has been disconnected from the supply. Before carrying out any work inside the equipment, capacitors connected to high voltage points should be discharged; to discharge mains filter capacitors, if fitted, short together the $L_{\text {_ (}}$ (live) and N (neutral) pins of the mains plug.

Note also that the 12 kV e.h.t. circuit for the cathode ray tube retains its charge for a considerable time after switch off. Therefore before any handling is carried out in the vicinity of the cathode ray tube or e.h.t. unit it is essential that the supply is disconnected from the instrument and the final anode lead is shorted to the chassis several times immediately after unplugging. The residual charge on the c.r.t. itself must also be removed by shorting the anode connection to earth.

Mains plug

The mains plug shall only be inserted in a socket outlet provided with a protective earth contact. The protective action shall not be negated by the use of an extension lead without protective conductor. Any interruption of the protective conductor inside or outside the equipment is likely to make the equipment dangerous.

Note that there is a supply fuse in both the live and neutral wires of the supply lead. If only one of these fuses should rupture, certain parts of the equipment could remain at supply potential.

To provide protection against breakdown of the supply lead, its connectors, and filter where fitted, an external supply fuse (e.g. fitted in the connecting plug) should be used in the live lead. The fuse should have a continuous rating not exceeding 6 A.

Make sure that only fuses with the required rated current and of the specified type are used for replacement. The use of mended fuses and the short-circuiting of fuse holders shall be avoided.

Secondary fuses

Each secondary winding of transformer $T 1$ (with the exception of $+5 V$ and +12 V supply lines, adequately protected by the primary fuses $F 1$ and $F 2$) is fused with a $250 \mathrm{~mA}, \mathrm{~A}-\mathrm{T}$ (250 milliamp time lag) fuse to provide added safety. These are situated on the secondary tag board within the instrument and can be accessed by removing the lower cover.

CAUTION : STATIC SENSITIVE COMPONENTS

Components identified with the symbol Δ on the circuit diagrams and/or parts lists are static sensitive devices. The presence of such devices is also indicated in the equipment by orange discs, flags or labels bearing the same symbol. Certain handiing precautions must be observed to prevent these components being permanently damaged by static charges or fast surges.
(1) If a printed board containing static sensitive components (as indicated by a warning disc or flag) is removed, it must be temporarily stored in a conductive plastic bag.
(2) If a static sensitive component is to be removed or replaced the following anti-static equipment must be used.

A work bench with an earthed conductive surface.
Metallic tools earthed either permanently or by repeated discharges.

A low-voltage earthed soldering iron.
An earthed wrist strap and a conductive earthed seat cover for the operator, whose outer clothing must not be of man-made fibre.
(3) As a general precaution, avoid touching the leads of a static sensitive component. When handing a new one, leave it in its conducting mount until it is required for use.
(4) If using a freezer aerosol in fault finding, take care not to spray programmable ICs as this may affect their contents.

WARNING : HANDLING HAZARDS

This equipment is formed from metal pressings and although every endeavour has been made to remove sharp points and edges, care should be taken, particularly when servicing the equipment, to avoid minor cuts.

When exposing or handing the cathode ray tube care must be taken to prevent implosion and possible scattering of glass fragments. Handing should only be carried out by experienced personnel and the use of safety mask and gloves is recommended.
A defective tube should be disposed of in a safe manner by an authorized waste contractor.

WARNING : TOXIC HAZARD

Many of the electronic components used in this equipment employ resins and other chemicals which give off toxic fumes on incineration. Appropriate precautions should therefore be taken in the disposal of these items.

Chapter 4

TECHNICAL DESCRIPTION

CONTENTS

Para.
Introduction
Brief overall description
Brief unit technical description
Signal channel (AF03/1, AC12)
Analogue-digital system and log conversion
Port control
Keyboard and spinwheel
Detailed technical description
Power supply unit (ARO6)
Keyboard and spinwheel control (AF01/AF02)
CRT (ATO1/1)
Timing circuit (ACO1)
Line generators A and $B(A C O 2 / A C O 3)$
Video circuit (graticule) (ACO4/L)
Alpha generator (ACO5)
101 Microprocessor (AC18)
118 Software Link options (AC18)
123 In-Out board (ACO9/2)
135 A-D system and log conversion (AC11)
150 Signal Channel (AF03/1,AC12)
182 Ramp circuit (AR04/1)
184 GPIB interface module

Fig.	(continued)					Page
11	RaM Select Timing waveforms (ACl8)			-••		31
12	Machine cycle Wait state and Fetch	instruction	(ACl 8)	. . .		32
13	Link options Memory map (ACl 8)			34
14	Log data PROM Range/Resolution (ACl	1)		40
15	Deglitched input to ACl2 2nd stage	amplifier	. .	. \cdot	-••	45
16	Signal channel timing waveforms	-••	. -	-••	46
17	Chopper drive signals f.m.l, f.m. 2	- ...	-••			47
18	Interface bus structure					50
19	Handshake procedure	-••		-••	52

INTRODUCTION

1. The 6500 Automatic Amplitude Analyser is a microprocessor controlled scalar network analyser. When used in conjunction with an r.f. sweeper, the instrument facilitates the measurement of transmission loss or gain, return loss or power, the results being displayed in graphical form on the integral CRT.

BRIEF OVERALL DESCRIPTION

2. The 6500 has 3 independent channels, to which are connected detectors, each has a data store which holds 'live' measurement data and an associated memory for holding reference data for normalisation purposes. Each memory and data store can hold a complete sweep of 422 measurement points across the selected frequency range. The 3 input channels are multiplexed and before a sweep is started the required channel is switched on. At each measurement point the microprocessor accesses from the signal processing stages a log converted value of the signal and stores it in the channel data store. This data is converted into a displayed value using the screen parameters of DATUM and RANGE.
3. Keyboard selection allows live displays of channels A, B and R independently or a combined display of channels A and B. The associated memories are used to store the system response before insertion of the device-under-test. The appropriate memory is then subtracted from the live display to give a normalized response. Channel R (the reference channel) is used in parallel with the measurement channels (A and B) to prevent any variation in the sweeper's output from affecting the response obtained for the device-under-test.
4. The AUTO key enables the optimum screen display of the amplitude of the required channel(s) to be shown. Vertical graticule lines are placed automatically.
5. RANGE and DATUM keys enable the amplitude display to be varied. LIMITS may be set for amplitude maximum or minimum and if exceeded an error message is displayed, or an SRQ command sent via the GPIOtB (if this option is fitted).
6. All front panel functions may be controlled via the GPIB interface, if this option is fitted. The interface is available either factory-fitted or as an optional accessory for field-installation. The interface conforms to the IEEE 488 standard, but an accessory is available to convert to IEC 625 systems.

Chap. 4
Page 2
7. An automatic self test routine is carried out when the instrument is switched on and a ZERO facility exists to enable stray system voltages on each of the 3 channels to be compensated for.
8. Channels may be displayed as either a LINE or HISTOGRAM for ease of viewing. The display may be frozen for photography or output to hard copy via the PLOT facility.
9. A BRIGHTLINE is shown vertically on the display giving a readout of amplitude and frequency to 0.01 dB and 10 MHz resolution. It can be set to MAX or MIN values or used to set up frequency bands for measurement or to zoom-in on an item of interest on screen. The BRIGHTLINE is also used for displaying up to 8 on-screen markers and has a ΔF function, allowing the sweep to be centred on the brightline position. This is particularly useful for filter analysis.
10. The PLOT facility drives a standard $X-Y$ recorder and prints the displayed amplitude and frequency details shown on screen. A menu allows a choice of axes annotated for frequency and amplitude scales, and selects the speed of plotting for accurate results to be recorded.
11. Low noise detectors in the 6500 series maintain a high accuracy. True square law and temperature correction is provided up to +16 dBm for high power measurements without compression. The 6500 has a dynamic range of 66 dB in normal operation. An AVERAGE facility can reduce the noise level to -55 dBm .
12. Amplitude scaling in $d B, d B m, m W$ or VSWR and user selected limits, (High, Low, Channels A and B) may be programmed and stored via the keyboard. Messages are also flashed on screen when limits are exceeded. The STATUS function displays: the current user parameters, their status (enabled or disabled), current $G P I B$ address, frequency range and $d B$ relative values.
13. Up to 9 such front panel settings may be stored and recalled. The frequency scaling on the X axis and BRIGHTLINE may be removed for security (when photographing the display for example) using the SECRET key. Calibration aid is provided and the 6500 has many self diagnostic routines for fault finding.

BRIEF UNIT TECHNICAL DESCRIPTION

14. The 6500 is designed around a central microprocessor which exercises control and timing over the various functional blocks of the instrument. It also ensures maximum flexibility and, if required, allows programming by the General Purpose Interface Bus (GPIB). This facility is offered either built-in or as an Optional accessory.
15. The instrument is divided into five main areas see Fig. 1 , these are as follows :-
(1) Power supply
(2) CRT and Display drive
(3) Display
(4) Microprocessor
(5) Signal channel and analogue interfaces

Fig. 16500 Amplitude Atwiseer, simplified block diagram

The display circuits provide timing control and access to the layers making up the overall display, and they function independently of the microprocessor so as to provide a stable display. Interfacing to the CRT/Display drive is carried out by separate sync. and video signals virtually identical to standard television signals. Generation of the e.h.t., amplification of the video signal and the power drive to the c.r.t. yoke coils are also carried out by the display (ATOl/1).
16. The display drive incorporates the alphanumerics (ACO5), two displays A, B in line or histogram form (ACO2, ACO3), and the graticule/brightline markers (AC04/1). The microprocessor is actually halted when a "Memory" display is show, thus demonstrating that the display can function without microprocessor intervention. Although most operations are performed using the microprocessor it is important (for reasons of speed) to display the information directly. Only updates of information are therefore controlled by the microprocessor.
17. All the information for the display is stored digitally in RAM memory store. This is accessed via counters synchronized to the line frequency, (line being the rate at which the electron beam in the c.r.t. is swept across the screen i.e. 15.625 kHz). In order for this information to be updated, it is necessary to provide the microprocessor with access to the RAM and this is carried out by data selectors, disconnecting the counters and allowing the RAM to be accessed by the microprocessor's address and data bus lines.
18. Each block of RAM has its own memory location in the Memory map. Addresses $8000 H$ - $8 F F F H$ are reserved for control ports to provide access to other functional blocks.
19. The operation of the instrument relies on standard microprocessor technology and employs an 8085A-2 (ACl8) 8-bit microprocessor. It operates at a clock frequency of 5 MHz derived from a 10 MHz crystal standard. The signal channel and analogue interface form the data acquisition and plotter interface. The plotter is in fact an extension of the normal operation of the instrument, and because the plot is not required simultaneously with swept operation it uses many of the interface functions normally employed in data acquisition. e.g. The digital-analogue converter providing the plotter Y output is also used for generating the ZERO voltage.
20. Other circuits within the data acquisition block are the signal channel (AC12, AF03/1), analogue-digital converter and log conversion (AC11), port control (ACO9/2) and the keyboard and spinwheel control (AFO1/AF02). Each of these circuits cannot usefully function without frequent microprocessor intervention. The remainder of the instrument (excepting the c.r.t. display etc.) relies totally on the internal software program.
21. Each circuit or function is accessed via a microprocessor port. Each port has its own address, a READ port is one which provides data for the 6500 from an external source or key press. A WRITE port controls a circuit or provides an output from the 6500 e.g. Range selection or X Ramp control. Each port can be referred to by name as shown in Fig. 2.

Fig. 2 Memory mapped ports
22. The three input channels A, B and R each have an f.e.t. chopper (parts of AFO3/1) immediately following the input socket to give a low noise input. After the first stage of amplification Axl or Axl00 gain, which is controlled by the microprocessor, signals are multiplexed or switched from A, B or R channels to a single signal path. This is buffered and fed via an SMA connector to the Signal board (ACl2) where two further stages of gain (microprocessor controlled) are available to provide a signal level of approximately 2 V .
23. On ACl2 the signal is fed initially to a simple sample and hold (de-glitch) circuit to remove noise spikes generated by the chopper which at low levels are far greater than the signal itself (40-100 mV spikes may be present at the chopper which must discern signals as small as $1 \mu V)$. After the third amplifier stage the signal is restored to a d.c. level by a phase synchronous detector and a d.c. amplifier where a programmable offset voltage is added to null any shape changes that occur on the different ranges.
24. The d.c. signal is finally passed through a switch (where a temperature correction signal can be selected) and clipped to prevent negative-going transitions which would otherwise damage the following A-D converter. The overall gain is controlled (in six ranges) by the microprocessor as is the switching through of the required channel and temperature sensor, see fig. 3 .

Signal channe1 (AF03/1,AC12)

Fig. 3 Input circuitry
25. In order to ensure that the correct gain is selected a status value is read from the $A-D$ converter which is checked to determine whether over or under range. A comparison is made by a digital comparator and the gain shifted up or down until a valid $A-D$ reading is obtained.
26. The signal input circuit (AF03/1) also provides a cemperature indication, this voltage ($0-10 \mathrm{~V}$), is fed via $A C 12$ to the same $A-D$ converter that provides the conversion for the signal channel. ACl2 also provides generation of the chopper drive signal to drive the front f.e.t. choppers. This is derived from the line frequency ($\simeq 15.625 \mathrm{kHz}$) and is synchronous with it, (the line frequency is also synchronous with the microprocessor clock). This ensures that no interference patterns generated from the c.r.t. are picked up and affect the signal processing.
27. Because of this synchronizing it is possible to identify pick-up areas on the chopper cycle and avoid them when re-constitution of the d.c. level
occurs. The chopper runs at Line/2 ($=7.8 \mathrm{kHz}$) also ensuring that pick up affects both halves of the waveform identically.

Analogue-digital system and log conversion

Fig. 4 Data correction circuit
28. The signal channel output (level $0-10 \mathrm{~V}$) is a linear $D C$ analogue of the $D C$ signal provided by the detector and chis is fed to the input of the $A-D$ system (ACll). However, the 6511 detector has a "square law" (approximately) relationship between input power and output voltage. To allow for this (to give a linear relationship to the RF level) the signal channel signal is converted to the logarithmic value. The conversion to logarithmic value is accomplished digitally after A-D conversion. Two PROMs contain log data so that the combination of an $A-D$ converter and two log PROMs form a log A-D converter. It is the data from the PROMs that the microprocessor reads. No linear data is available to the microprocessor.
29. Board ACll also contains the latches which hold the signals controlling the channel multiplexing/gain/temperature select etc., signals which are written in by the microprocessor and then routed to the signal channel (ACl) . No digital processing occurs on boards ACl2,AFO3/1 thus minimizing microprocessor noise effects and ground noise.

Port control

30. The generation of the sweeper ramp, plotter drive signals and the zeroing voltages required by the signal channel is provided by the In-Out interface board ($\mathrm{ACO} / 2$). There, $\mathrm{D}-\mathrm{A}$ converters are formed either by 8-bit latches followed by the $D-A$, or a 12 -bit $D-A$ with the latches integral within the IC. The D-A converters are all controlled exclusively by the microprocessor and are designated as follows :
(1) 8-bit Y-Ramp (plotter)
(2) 8-bit Null voltage
(3) 12-bit X-Ramp (plotter)
and in addition a switch,
(4) Plotter pen lift
(5) 12-bit Auto-zero

Note ...
The plotter output BNC terminals are disconnected when not in the PLOT mode of operation, this is to prevent erroneous operation of the plotter.

Further description of the operation of these ports is given in the paragraphs describing the software concept.

Reyboard and spinwheel

31. The software is structured in such a way that when no control is being exercised over the operation of the instrument, either by the GPIB or the front panel keyboard, the instrument remains sweeping (with a few exceptions). A simplified structure would be as shown in Fig. 5 below.

Fig. 5 Simplified software structure
32. Any of the functions; moving the brightine, sending of GPIB information, or pressing a key, will interrupt the current operation of the instrument to re-assess the requirements of the user i.e. a mode change or the changing of a parameter.
33. All the keys are held on board AFO1, each key having two (used) contacts normally in the open circuit condition. They are positioned in a matrix of lines such that each key has one ' X ' and one ' Y ' line connected to it, no two keys having the same pair. A standard KR-2376 keyboard encoder (situated on board AFO2) or its equivalent is used to scan the keyboard continually to check for operator intervention. The device will check first to ensure that this is not a spurious response (de-bounce) and then generate a unique code and an interrupt signal to the microprocessor.
34. The Brightline control comprises a motor and operational amplifier window comparator which converts d.c. generated by movement of the motor to a chain of pulses. A direction signal is also derived. The pulses produced generate interrupts to the microprocessor, these and the direction signals are accessed on a port to be read by the microprocessor for control of the Brightline's position and up-date of Brightline information.
35. The pulses are generated by an integrator, and two comparators in parallel, when the comparator 'trips' a pulse is generated setting the direction flip-flop and resetting the integrator.

DETAILED TECHNICAL DESCRIPTION

Power supply unit (AR06)
Circuit diagram : Chap. 7, Fig. 13
36. This is a conventional torroidal type transformer and bridge rectifier configuration with IC regulators, each of which is protected by IN4004 rectifier diodes. The unit is mechanically designed to detach completely from the instrument for ease of maintenance. The cooling fan is mounted within a box used as a heatsink on which the high dissipation regulators are mounted.

Each regulator features internal shutdown operating in the event of an overload or if operating temperatures are exceeded. These obviate the need for crowbar or trip circuits.
37. The mains input socket features a mains filter as a standard protection against spurious noise spikes. The mains supply range 120 V or 240 V is set by a slider switch situated on the rear panel, its position being locked by a reversable cover plate indicating the selected range. Primary and secondary tag boards are provided to allow easy disconnection of transformer, fan, mains, input socket and mains switch connections.
38. The torroidal transformer $T 1$ is fixed to the chassis using embedded brass threads in the centre for mechanical strength. The secondary tag board also incorporates secondary fuses F3 to $F 7,250 \mathrm{~mA}-\mathrm{T}$ (250 milliamp time lag)
providing overcurrent protection for all supplies except the +5 V and +12 V lines, these are adequately protected by the two input primary fuses $F l$ and E2.
39. Regulated voltage supplies, regulated $+24 \mathrm{~V},+15 \mathrm{~V},+12 \mathrm{~V},+5 \mathrm{~V}$, and -15 V d.c. voltages are used to power the 6500. Additionally, two further independent +15 V and -15 V supplies are provided for the analogue circuits.
40. Two diodes are fitted between chassis and the OVA and OVD terminations. D7 and D8 situated on board ARO2 give added protection should the continuity of $O V A$ and $O V D$ be interrupted when the power supply unit is removed for servicing.
41. $\pm 15 \mathrm{~V}$ Regulator assembly (AR01), +15 V and -15 V supplies are derived on this board. Dl and D4 form the full wave rectifier bridges, Cl and C4 the reservoir capacitors. Regulators $I C 1$ and $I C 2$ are protected against possible discharge currents in the event of an open circuit by D2, D3, D5 and D6. Fuses FS5 and FS6 give protection to the transformer which otherwise might suffer damage in the event of short circuit. Capacitors C2, C3, C5 and C6 improve the ripple rejection of the regulators and prevent unwanted oscillations.
42. $\pm 15 \nabla$ Regulator assembly (AR02), this assembly operates in an identical manner to the AROl regulator described above and provides independent +15 V and -15 V supplies to the analogue signal input board AC12 and AF03. D7 and D8 provide protection when board earth terminations are disconnected.
43. $+12 \nabla$ Regulator assembly (ARO3), the printed circuit board, IC2 and D2 full wave rectifier, are all mounted on a heat sink. $C 1$ and $C 7$ are the reservoir capacitors, Dl and D2 give protection from accidental short circuits. R1, R2, C2 and C3 improve the ripple rejection. The output also provides a supply to the front panel MAINS ON/OFF l.e.d. the voltage is dropped from +12 V by R1 situated on board AR07.
44. +24 V Regulator assembly (AR05), the assembly p.c.b. is mounted on the heat sink and employs a pre-regulator TR1, R1, D2, C2 dropping the voltage to avoid over power dissipation in ICl regulator. This supply is made available to the Ramp circuit, board ARO4 and is used to generate the $0-20 \mathrm{~V}$ variable ramp.
45. +5 V Regulator (AR06), this is a high current regulator which has all its components mounted on the heat sink with the exception of three capacitors C 8 , C9 and C10, which provide smoothing. All earth terminations are coupled together at one point on the motherboard for best possible ripple rejection and transient response.

Keyboard and spinwheel control (AFO1/AFO2)

Circuit diagrams : Chap. 7, Figs. 9 and 10.
46. The front panel keyboard assembly is made up of two p.c.b.s, AFOl holds the key switches on a matrix and is coupled to AFO2 p.c.b. by Flexistrip cable. AF02 holds all the decoding circuits to present to the microprocessor an interrupt ($\overline{I N T}$) and a unique data code for the key pressed. Interrupt pulses are also generated by the spinwheel control circuit. Key and spinwheel data is present on two ports for reference by the microprocessor when running the interrupt routine.
47. All the front panel keys on $A F O 1$ are held on a matrix of X and Y digital lines. Each key is connected in such a way that it has its own unique
combination. ICl on board AF02 is a complete keyboard encoder/scanner continually scanning the matrix for a response from the keyboard. When a key is pressed a response is received. Scanning pulses are sent out on the X set of lines and key press replies are received on the Y set of lines.
48. The clock frequency and de-bounce time is determined by $R 2, C 2$ and $C 1$, R1. De-bounce time is a finite time that a key press response has to remain active before it is entered as valid data. A properly executed key stroke will produce a strobe output on ICl pin. 16.
49. The data for the keyboard will appear on ICl pins $10-15$ when the strobe is active. This data is made available to the microprocessor by reading the 'Keyboard data port', IC8, and the strobe data at the 'Spinwheel data port', IC9, via IC2. The strobe is also used to assert the interrupt ($\overline{I N T}$) line (via R26 and TR3) on AMO1 bus. This is in turn tied to the microprocessor and causes execution of the current program to pause (providing interrupts are enabled) and execute the interrupt handing procedure located at program memory address 0038H.
50. IC2 operates as a 'Strobe enable'. Once this has been latched it remains valid until the microprocessor addresses the latch via IClO pin 12 , at which time the strobe is cleared but not re-enabled.
51. On receipt of a second pulse the latch is re-enabled, this allows the microprocessor to have control over interrupts preventing another key stroke (that could possibly be made during the interrupt handing) from causing incorrect operation. The microprocessor only enables the strobe when it has completed the first key stroke operation.
52. A third port, the 'Front panel l.e.d. drive' is formed by a simple dual flip-flop, ICll. Data determining the on/off state of the two front panel l.e.d.s can be written in at any time by setting up the DO and Dl data lines on ICll pins 12 and 2 via $S K I$ and $A M O 1$ motherboard and strobing the clock (with the $\overline{W R}$ line). The two outputs drive TRI, TR2 via R23, R24 with R21, R22 acting as the l.e.d. current limit resistors. The lines are then connected to AFO1 l.e.d.s via a flexistrip connector pins $B 6$ and $B 7$ where they complete the earth return for both SHIFT and LOCAL l.e.d.s. The positive terminal of these are wired directly to the +5 V digital supply via pin B 5 .
53. IClo provides port decoding for this board, with select pulses being placed on one of the output lines on pins 11-15. The port is only active when either $a \overline{R D}$ or a $\overline{W R}$ instruction is asserted.
54. Brightline (spinwheel) control, IC3 and its associated components form an integrator, nulled by R27. An e.m.f. is produced when the spinwheel motor is turned which is added to the voltage at IC3 pin 6. Providing that the voltage is sufficient (i.e. the motor is turned fast enough) it will reach a potential determined by the 'Window comparator'. This is formed by IC4 and IC5, the higher voltage limit of the window is determined by $R 8$, R9 and the lower voltage limit by RI3, R14. When either of these limits are reached either IC 4 or IC5 will latch to approximately 0 V , due to the positive feedback employed via RlO and RIl.
55. One function of the window comparator is to operate the flip-flop IC6d/IC6e, this is set to indicate the 'Direction', its output is placed on the data bus via IC7e and IC9 pin 4. This data remains valid until the direction of the spinwheel is changed, when this occurs the flip-flop changes state and with it the data output. Details of this and other output conditions are shown in Fig. 6 below.
56. A further output of the window comparator IC4, IC5 is ORed by D2, D3 to give a negative-going short duration pulse which is buffered and stretched by the action of IC6a, C4/Rl6, IC6b, and IC6c to give a positive output pulse of approximately 1 ms duration. This is used to supply signals for the following :-
(1) A PULSE logical '10w' signal via IC7a and D6.
(2) A DIRECTION signal buffered onto bit 7 of the data bus via IC7c/IC7d and IC9 pins $2 / 12$.
(3) Integrator reset, the 1 ms pulse is fed via Dl to the gate of TR4. This f.e.t., normally turned off, is switched on by this pulse as the window voltage limit is reached. The pinch off voltage of the f.e.t. is critical and care is taken to ensure that as IC3 voltage rises the bias does not turn $T R 4$ on before reaching the window comparator limit. IC3, integrator resets as TR4 turns on and almost instantaneously TR4 turns off, until once again the voltage output of IC3 pin 6 reaches the window limit voltage and the cycle is repeated.

IC7a pin 2 (PULSE)

Fig. 6 Spinwheel (Brightline) control timing waveforms (AFO1/AF02)

CRT (AT01/1\& ATO2)

57. When exposing the c.r.t. care must be taken to prevent implosion and possible scattering of glass fragments. The c.r.t. employs high voltages (+12 kV) which are capable of internal flash-over or tracking from the anode cap or any other high voltage area. It is therefore important to ensure that if this were to happen the current would be conducted safely to earth. To achieve this a base sparkguard has been fitted, this board supports the c.r.t. base socket and is made from fire retardant material to prevent scorching, and has spark gaps punched into it. These protect the semiconductors on AT01/1 in the event of a high voltage flashover.
58. Line drive. The line drive is synchronized to the positive-going t.t.1. line sync pulses appearing at PLl pin 5. These pulses are inverted and level shifted by TR4 to provide trigger pulses for IC2 which is a timer IC connected for monostable operation. The output pulse width of IC2 is adjustable by R31. This alters the phase of the final drive relative to the incoming sync pulses and provides control over the vertical position of the displayed information within the raster area. IC3 is a second timer device which is connected for astable operation at approximately line frequency (15.625 kHz), but is synchronized by re-triggering from the output of IC2 via D3. The astable mode of operation is chosen so that removal of the incoming line sync pulses will not result in the loss of drive to the line output transformer, T1.
59. The output of IC3 is buffered by TR5 and drives TR6 via C 23 which improves the turn-off characteristic and $R 37$ which limits the base current. TR6 drives the line deflection coils in parallel with the primary of Tl. During the period when TR6 is turned on the energy stored in C30 is discharged into the yoke causing the c.r.t. beam to scan vertically across the screen. When TRG is turned off the energy stored in Tl is transferred to C24 which discharges into the yoke causing the c.r.t. beam to be rapidly deflected back to the bottom of the screen. Ll regulates the current flow through the yoke and provides a line amplitude control. In a similar manner L2 provides control over line linearity.
60. Secondary voltage supplies. The secondary windings of Tl provide four secondary voltage supplies required by the circuit. The final anode voltage of +12 kV is generated by an overwinding on the transformer which has an integral rectifier moulded into the assembly. The output is taken directly to the c.r.t. via the red e.h.t. lead and anode cap.
61. D8 and $C 27$ provide rectification and smoothing for -50 V which is used as a negative supply for the brilliance control. TR7 is normally turned on but on power down the base voltage collapses causing TR7 to switch off. The c.r.t. grid voltage rises, flooding the tube and extinguishing the display.
62. D10 and $C 26$ provide +100 V which is used as a positive supply for the brilliance control and also the video amplifier.
63. D9, R39 and C28 provide +480 V which is required for the focus control and also provides the Al voltage via a potential divider R42 and R43. The Al voltage is further smoothed by C29.
64. Frame drive. The frame drive is based on ICI, a TDA 1170 , and is a standard application circuit for this device. The oscillator free-run frequency is determined by $R 1, R 48$ and $C 4$, which provide a frame lock control. The oscillator is synchronized to the incoming frame syac pulses on PLl pin 6,
which are applied to pin 8 of $I C 1 . \quad R 2$ and $R 3$ control the amplitude of the internally generated ramp and hence the width of the display. The network around R6 alters the shape of the ramp, providing a frame linearity control. The characteristics of the output stage of ICl are set by R7-12 and C7, C9 and R13 damp the high-frequency transients generated during flyback. ClO acts as a d.c. current block.
65. Video drive. The video signal is input on PLI pin 4. TRI acts as an emitter follower supplying the video driver TR3 which provides current amplification. The response of the circuit is set by R21 and Cl4. TR2 is a voltage amplifier whose d.c. operating point is set by R17. R17 is normally adjusted for $+70 \mathrm{~d} . \mathrm{c}$. at the collector of $T R 2$. The video drive output is fed directly to the cathode of the c.r.t.
66. Flash-over protection. When a flash-over occurs within the c.r.t the final anode capacitance is rapidly discharged through one of the c.r.t. electrodes. The resultant voltage spikes are prevented from damaging the circuitry by a resistor and a spark-gap at each electrode junction. The resistor presents a high impedance path to the spike, whilst a low impedance path is presented by the spark-gap when ionized. Thus the discharge current is routed back to the external c.r.t. coating, preventing large currents from flowing through the c.r.t. circuitry.

Timing circuit (ACO1)
Circuit diagram : Chap. 7, Fig. 1
67. All data required to form the timing signals to provide the various display layers are held in pernanent memory using a control PROM. One PROM holds signal data occurring at line rate, another holds the Frame orientated signals. Counters address the PROMs and the contents are latched out to prevent spurious signals. This method ensures that no phase delays result, these could otherwise cause jitter or blurred detail.
68. The display is interlaced (alternate frames formed by scanning the beam across the screen, bottom to top, left to right, are offset by half a vertical line width), see Fig. 8 for details. This standard TV method allows higher resolution on the c.r.t. ACOl controls and synchronizes signals on other boards such as $\mathrm{ACO} 2,3,4$ and 5 , no actual video signals are present on ACOl.
69. Line orientated signals, the fundamental 5 MHz clock frequency from the microprocessor AC18, (Lx320), is fed to buffer ICld via pin A32 to give a noise free clean edged clock pulse. IC2 pre-scales ICld clock output and IC3 synchronizes the signals to the 5 MHz clock. IC3/Q2 output provides a latching edge to latch into IC7 the line timing data from IC6.
70. IC4/QA output provides a line $x 2$ clock for board ACl2 chopper circuit with the remaining outputs of IC4 and IC5 combining to form a 6-bit counter which is used to address IC6 'Line timing' producing a line $\simeq 64 \mu s$ digitized to 64 steps. The counters IC4/IC5, are reset at the end of each frame to ensure synchronization.
71. Each output of IC6 forms a digital signal repeated at line rate, the data for these are given in the Software archive. The following lines are constituted:-

Q0, Lx32S (A21)	Synchronized 'LINE x $32 S^{\prime} f r e q$. used to enable the alphanumerics (ALPHA) shift register on the Alpha Generator board AC05.
Q2, BOL (A9)	'BEGINNING OF LINE' cycle (pulse active low) used to load line position on Line Generators A \& B boards ACO2/ACO3. Also used on Character column address $\div 6$ circuit ACO5.
Q3, $\overline{\text { LD ARAC }}$ (A6)	'LOAD ALPHA RAM ADDRESS COUNTERS', loads Alpha address timing counters on board ACO5.
Q4, LGW (A3)	'LINE GRATICULE WINDOW' used as a gating pulse to determine the graticule window on boards $\mathrm{AC} 02 / \mathrm{ACO} / \mathrm{ACO} / 1$. That is the portion of a vertical scanned line forming part of the displayed graticule.

Q5, HORIZ.GRAT (A20)	'HORIZONTAL GRATICULE' enables the ll horizontal graticule lines on the Video circuit board ACO4/l.
Q7, BL WND (A13)	
Q2, LINE DRIGETLINE WINDOW' gating pulse used on board ACO4/l.	

Fig. 7 Interlaced c.r.t. display (ACO1)
72. Frame orientated signals, these are derived in a similar manner to the line signals, the address to IC9 'Frame timing data' is counted by IC8, clocked at line $x 2$ in order to achieve the required interlaced display. The least significant bit is not used to address IC9 2 K byte EPROM, one count is missed every frame scan by gating IC16a with a pulse longer than line $\div 2$ from IC5 pin 11 and a shorter than line length pulse generated at IC11 pin 7 .
73. IC8 pin 12 (Q9) output triggers the monostable flip-flop ICll to provide a frame sync pulse 'FIELD DRIVE' buffered by ICl6d and fed to the c.r.t. ATOl/l board. IC10, 'Frame timing latch', provides the frame signal's latch data asserted at the beginning of line blanking. A combination of line and frame pulses are gated by the following :-

QO, IC13a CK ARAC (A5)

IC13b VIDEO BLNK (A7)

IC13d/IC16c/IC17d LINE GEN CK (A1)
'CLOCK ALPHA RAM ADDRESS COUNTERS' only occurs during 'ALPHA WINDOW'.
'VIDEO BLANKING' (composite) line and frame blanking.
'LINE GENERATOR CLOCK' used on boards ACO2/ACO3
74. Latched outputs from IClo that are exclusively frame pulses are constituted as follows :-

QO, ALPHA WND

Q1, $\overline{\text { FR BLANK }}$
Q2, FGW
Q3, $\overline{\text { END Ist FR }}$

Q4, $\overline{\text { RESET ARAC }}$

Q5, VERT GRAT

Q6, $\overline{P R ~ A R A C}$
'ALPHA WINDOW' Alphanumeric information is enabled during this period.
'FRAME BLANKING'
'fRAME GRATICULE WINDOW'
'END FIRST FRAME' Logic low level indicates that the first of the two scans is completed - required in generating the line displays.
'RESET ALPHA RAM ADDRESS COUNTERS' A logic low level resets the RAM address counters at the beginning of a scan.
'VERTICAL GRATICULE' This signal is no longer used.
'PRESET ALPHA RAM ADDRESS COUNTERS' Presets the RAM address counters with data on board ACO5 pin A10.
75. IC9 holds different data for the two frames (512 data bytes) and is addressed in such a way that the frame data is entered sequentially through from line 1 to 512 and is not interlaced for each frame. This simplifies the programming of the EPROM. IC8, QO addresses IC9, EPROM. IC16b, IC17c, Dl, R2 and $C 1$ form a pulse to reset the line counters after every complete set of two scans. Resistor Rl allows conversion from TTL to CMOS levels. Sl allows unused areas of the EPROM to be used for test purposes, at present this data is not utilized.

Line generators A and B (ACO2/ACO3)
Circuit diagram : Chap. 7, Fig. 2
76. The ACO 2 and ACO boards are identical apart from two wire links which select either LINE A or LINE B to set its position in the memory map of the microprocessor. The board's function is to provide a CRT display of measurement results in line or histogram format. ACO2 (LINE A) provides a display of traces for CHANNEL A or CHANNEL R, and ACO3 provides che display for CHANNEL B.
77. IC9 and IC10, Line display memories hold the display data in consecutive locations i.e. Display values 0 to 421 (from left to right) are stored in the RAM addresses 0 to 421. The height of a vertical line trace component is dependent on the data ($0-255$) stored at the corresponding RAM location. Data 0 corresponds to the top and data 255 to the bottom of the trace respectively, as shown in Fig. 8.

Fig. 8 Display data location (ACO2/ACO3)

The memory is accessed by both the microprocessor and the display circuits. Output from the line generator is in the form of a simple t.t.l. video signal.
78. ICI and IC2 carry out the decoding of the microprocessor address for the board. IC4 buffers data input/output from the RAM IC9, IClO and the microprocessor and also isolates the board from the data bus when it is not being updared. When the microprocessor is not addressing the RAM the display circuitry accesses it as addressed by the counter IC8 counting at line frequency (15.625 kHz), IC3, IC6, IC7 data selector/multiplexers switch the address information to the microprocessor bus when it demands the memory and reverts back to the display mode on release; Microprocessor access causes IC2, pin 15 (ACO2) or pin 13 (ACO3) to be asserted 'low switching to the microprocessor bus. The second output from IC2 on pin 14 (ACO2) or pin 12 (ACO3) is used as a port; address bit DO is latched into IC18 to control the selection of either LINE or HISTOGRAM display.
79. Histogram display. Considering this selection first, as IC8 output address progresses from 0 to 421, data can be loaded into ICl3, IC14, IC15 and ICl6 and the data up counted. During the LGW period the up counting is carried out by the 'LINE DOT CLOCK' (256 cycles for each LGW instruction) with a 'Carry out' occurring at a time determined by the data. Data of 255 will appear immediately at the bottom of the screen, data of 128 in the centre, and 0 at the top of the screen. Histogram display is in fact a modification of the Line display which is more difficult to achieve.
80. Line display. When HISTOGRAM is selected bright up occurs from the bottom of the graticule, up to the data point for each line. To provide a LINE display a line must be drawn from one data point to the adjacent point on the next line; consider the display shown below.

Fig. 9 Line display data/join up points (ACO2/ACO3)
81. The dots represent the data in memory, scan lines $1,3,5,7$ etc. occurring on the first frame and $2,4,6,8$ etc. on the second frame. Joining up from one data point to the data point on the line following is accomplished by accessing the data corresponding to both frames. Data is loaded into counter pairs IC13/IC14 and IC15/IC16 from the RAM IC9 and IC10.
82. The instruction $\overline{B O L}$ acts as a steering pulse to load one of the counter pairs. When this is asserted 'low' IC13/IC14 can be loaded. Two pulses are generated on the LINE GEN CK line, the first of these is steered to one of the counter pins via IC4 and ICl7a-c. In between these two LINE GEN CK pulses IC8 is clocked to provide the next address therefore causing two loads to occur during each line.
83. On the second frame after IC8 counter has been reset one pulse is generated to offset the line count by one to provide the interlaced frame line connections (2-3, 4-5 etc.). When loaded, both sets of counters stait to count up until the first.'Carry-out' occurs, this clocks one of ICI9's flip-flops, changing the state of IC2Oc to output the line video signal
(A4,A5). IC19's other flip-flop changes state when the second pulse,
corresponding to the higher data loaded, falls out of 'Carry-out' to restore IC2Oc to its original state and therefore ends the line video signal output at A4, A5.
84. The initial condition of IC19 flip-flops are set by the LGW to hold both outputs 'low'. Both are connected in a divide by two configuration, if the data points on two adjacent lines are identical neither flip-flop would change state and therefore no video output would result. C4 C5 R7, R8, D1, D2 and IC22c therefore provides detection of coincident pulses and a horizontal line ? of a duration determined by C6,R9, is produced instead by IC21, further gating of the video is carried out by IC22a,b, to prevent operation of line display outside the frame graticule window.
85. LINE/HISTOGRAM selector (IC18), the selector acts as a write-port from the microprocessor. A selection of HISTOGRAM sets a 'low' output at pin 5 which in turn disables the second flip-flop ICI9(Q2) by holding down its 'clear' input. Hence at the start of the LGW signal video continues to be output until turned off by the current lines 'Carry-out'.
86. Microprocessor access de-glitch circuit, IC5 provides the pulses for counter loading. If microprocessor access occurs at any time during these pulses, a secondary load pulse is generated to replace the one made ineffective by the microprocessor access, otherwise incorrect data could be loaded to the counters. The secondary load pulse occurs by detecting the switch-over of the data selectors and generating a pulse covering the time during which data is invalid - $a \overline{R D}$ or $\overline{W R}$ takes approximately $0.5 \mu \mathrm{~s}$ and IC6 and IC7 data multiplexer outputs will settle within 1.5 . s. When a counter load pulse (IC5, Q1, pin 13) is detected coincident with a microprocessor access IC5's second monostable input (pin 9) triggers via IClc to provide a replacement pulse some $2 \mu s$ later on its output (pin 12). Both of IC5's outputs are gated together in ICI7a. The above circuit improves the glitch free operation significantly although if microprocessor and line (15.625 Hz) frequency are not locked other timing problems would be likely to occur.

Note ...

The board's line display memory is not accessed by the microprocessor when in FREEZE mode of operation, and fastest access occurs when speed 0 (70 ms) is selected, useful for test purposes.

Video circuit (graticule) (ACO4 / 1)

Circuit diagram : Chap. 7, Fig. 3
87. Video mixing for boards $A C O 2 / A C O 3, A C O 4 / 1, A C O 5$ video signals occurs on ACO4/1. In addition video signals for the graticule lines and Brightline markers are generated. A read-port is also provided to enable the microprocessor to sample certain timing signals during self-test and normal operation. Each video signal is gated with an enable to allow portions of the display to be switched off. Markers and Graticule lines are held in memory, the position across the screen corresponding to the address. The data (a four bit word) for each scan line is arranged such that one bit corresponds to one signal, therefore allowing for four different vertical lines to be generated if required. The method for addressing the RAM is identical to that used on board $\mathrm{ACO} / \mathrm{ACO} 3$ i.e. switched between microprocessor and timing signals.
88. The data for graticule etc. line placement is held in the 1 Kx 4 RAM , IC8 and the address to it generated by the counter IC5 or the microprocessor address bus. Switching from one to the other is carried out by IC6 and ICl0 data selectors when the block decode is detected by IC3 pin 9 which decodes IC8, memory block 5COOH. IC7 is the data bus buffer for IC8.
89. IC2 and IC4 provide decoding and allow data to be read from IC1 'Timing signal port' and written to ICl2 'Display enable latch'. Various timing signals are provided on $I C l$ for self test purposes; to ensure correct timing signals, and provide blanking on access to the Alpha memory (the Alpha memory is only accessed by the microprocessor during line blanking periods).
90. The microprocessor can also write to IC12, Display enable latch to control which aspects of the video can be gated through to the video mixer. IC9 monostable generates ten narrow fixed horizontal graticule lines, these are triggered by transitions of the HORIZ GRAT signals (B20) originating on ACO1 Timing board. The remainder of IC9 could be used to generate small tick markers coincident with the start of the LGW although these are not now used, they can be generated merely by setting the appropriate bit in IC8 RAM location.
91. Gating is carried out by IClla,b. Assuming no microprocessor interference, data is clocked out of IC8 every scan line by clocking IC5 counter at line frequency using the BL WND (brightine window) signal. Each output bit from IC8 is routed via appropriate gating with the 'window' and enable signals to the 'Video mixer' as follows :-

Line A and B via IC13.
Marker, Brightline and Vertical graticule via ICIl and ICl4
Alpha video via ICl5b.
The relative brightness of the video signals is pre-set by R11-R.16
and final buffering is provided by TR1, TR2 and associated components. Video blanking is applied by TR3, driven by an inverted VIDEO BLNK signal from A7 via ICl5c. The video output is taken from pin B17 to the c.r.t., ATOl/ 1 boards SKl pin 4.
92. The software limits access to IC8 to blanking periods only otherwise video glitches would occur where incorrect data is available during the LGW period. The display enable latch IC12 is accessed whenever either A, B, or R channel is selected to switch on the appropriate line displays.
Alpha generator (ACO5)
Circuit diagram : Chap. 7, Fig. 4
93. The function of the Alpha generator board is to provide memory mapped alphanumerics to the c.r.t. as a 41 columns by 25 rows display giving 1025 character locations. Each character comprises a matrix of 8×6 illuminated picture elements or (pixels), vertically spaced by 2 elements. The memory is configured such that addresses increase by 1 from bottom to top and by 25 from left to right across the tube face.

ALPHANUMERICS MEMORY MAP

94. The alpha memory block has 1024 locations, although 1025 locations are mapped (this will cause any character written to the base address to also appear on the top right hand corner of the display). In this board, as with $\mathrm{ACO} 2 / \mathrm{ACO} 3$, and $\mathrm{ACO} / 1$, the memory is switched between two sets of address lines - microprocessor, and timing signals. The timing address requirements for this board are different in that each of the locations (e.g. 0-24) must be addressed for six consecutive scan lines followed by a further six for the following 25 locations and so on for all of the 41 columns. This is achieved by a divide by six circuit.
95. For the purpose of the display there is no difference between first and second frame (interlace) so a character block will in fact actually occupy twelve interlaced scan lines. The memory contains data ($0-255$) which in turn is used to address a character generator which holds the actual picture elements required to make up the character on the screen. The standard ASCII coding is used to generate the characters, and bit 7 (MSB) is used to 'Flash' the character to give extra emphasis to Error messages etc. on the display trace. IC2la,b, provides the gating and conversion in polarity for the alpha bright up video signal output at pin A6.
96. The alphanumeric memory (1 Kx 8) comprises IC6, IC7. This may be written to as though part of the microprocessor memory map, but is not read back to the microprocessor. Switching between microprocessor and Timing display addresses is carried out by IC8, IC9 and IC10 with each pin 1 asserted logical 'low' to select the microprocessor address. The memory block is decoded at 5800 H for 1 K by IC1, the data bus buffer IC4 being enabled by IC5c, d; gating together the enable and MEMW signals.
97. The timing address is generated by the divide by six circuit comprising IC2/IC3, this is triggered at line rate by the BOL signal at pin A9. The outputs of the divide by six circuit are used to address the three least significant bits on IC17 Character generator, data being arranged such that adjacent rows (left to right) of the pixel data for each character is held in adjacent, ascending locations of IC17 memory.
98. Data from IC6/IC7 RAM provides the remainder of the Character generator's address to read out of 25 consecutive locations during each line scan as shown previously in Fig. 10. IC17 Character generator data output is then loaded into ICl8 parallel in, serial out register at the beginning of a picture element and shifted out by LINEx320 (A32) (LINE being 15.625 kHz). When the next RAM location is addressed at LINEx32S (B21) (S indicates synchronized) 10 pixel outputs will be generated for each pixel vertical line, the last two elements are used as spacing blanks and are kept at logical 'low' level. The serial output of IC18 is finally gated at IC2la with the 'Character flash' circuit IC22/IC23, this is invoked when the data bit 7 is asserted high and gates the output at a rate of approximately 2 Hz .
99. IC2lb converts the polarity of the signal to give a 'bright' alpha video output at pin A6. IC20 provides a pulse approximately 100 ns generated by a synchronized version of the LINEx32 signal, this is necessary to prevent any shift in position of the alpha characters which would otherwise cause blurring on the display. IC20 also provides blanking during the time that the video RAM is accessed. This function is largely unnecessary now because the RAM is only accessed during the line blanking period anyway.
100. The RAM address is generated by ICII-IC16. The latches IC14, IC15, IC16 load the contents of the counters ICII, IC12, IC13 when instructed by IC5a pin 1. Gating of the $\overline{R R} \overline{A R A C}$ and the $\overline{B O L}$ signals together at IC5a generate a pulse to enable the COUNTER latches every six scan lines. At the start of a scan line the counters are loaded with the contents of the latches by the $\overline{L D} A R A C$ signal at pin $A 3$, this follows the $\overline{\mathrm{BOL}}$ signal. The counters are then clocked 25 times by the $C K$ ARAC signal at pin A2 to give a total output from ICll-ICl 6 of 25 consecutive upward counts which are repeated for six scan lines to form a column of characters. The latches are then loaded with the address of the next column (This is the highest count reached by the counters during a line scan). The $\overline{P R} \overline{A R A C}$ signal performs this function and repeats it for the next consecutive count of 25 and so on e.g. Count $0-24 ; 0-24 ; 0-24$; $0-24 ; 0-24 ; 0-24 ; 25-49 ; 25-49$; etc. The output then being combined to provide the address for IC6/IC7, alphanumerics character RAM.

Microprocessor (AC18)

Circuit diagram : Chap. 7. Fig. 5
101. The microprocessor board contains an 8085A-2 CPU, an internal clock generator operating at a frequency of 10 MHz , 8 K RAM, up to 32 K EPROM (depending on the selection of links 1-4), and buffers for the address and data bus lines. The clock frequency is divided internally to give a 5 MHz operating frequency. Components and the interconnections on this board are briefly described below, a full description can be found in "MCS 85 Users Manual" published by Intel Corporation.
102. The purpose of $I C 1, C P U$ is to control the instrument by means of the address and data buses. It is an 8 -bit NMOS microprocessor with interrupts, and features a multiplexed address/data bus. It is compatible with software in the 8080 series, but has two extra instructions available and operates faster.
103. R2, Cl provides power for PESET IN , Dl allows Cl to discharge when power is switched off. Three interrupt lines are brought via the edge connector to IC1. GPIB INT (B8) asserts RST 6.5 line high. INT (A19) is an active low bus signal inverted by IC2a and fed to RST 5.5, this is used for spinwheel and keyboard interrupts. TRAP (B4) is another active low bus signal not used at present but made available for future expansion.
104. Address and Data buses are multiplexed, pins A8 - Al5 are output-only lines carrying the high-order byte of memory addresses. ADO - AD7 are
bi-directional lines which output the low-order byte of memory addresses and also double as a bi-directional data bus. IC15 latches the low order address lines AO - A7 on receipt of the ALE (Address Latch Enable) pulse from ICl. IC14 buffers the high order address lines A8 - Al5.
105. IC11 bi-directional data bus transceiver direction is controlled by the microprocessor's RD line. ICl6 buffers the following miscellaneous control signals; $\overline{\mathrm{WR}}, \overline{\mathrm{RD}}, \mathrm{CLK}, \overline{\mathrm{PRT}}, \overline{\mathrm{RAM}}, \overline{\mathrm{RAM}-\mathrm{UNS}}$. The 5 MHz clock IC1, pin 37 is inverted by IC2f to eliminate display jitter due to noise spikes present on the negative half cycles. The CLK signal is also fed in parallel through IC16 to give extra drive, R6 prevents display jitter by damping any excessive ringing.
106. Address lines A14, A15, are used to decode four 16 K address blocks via IC3a, 0000 H - 3 FFF , 4000 H - 7 FFFH , 8000 H - BFFFH and COOOH - FFFFH. Block 8000 H - BFFFH is further decoded by IC3b via address lines A12 and A13 to give the memory mapped port block 8000 H - 8FFFH. The $8 \mathrm{x} \times 8$ bytes of RAM (read/write) provides the work space and instrument storage for the 6500 and is addressed contiguously. IC5 decodes the four RAM select lines for IC17, $18,19,20$, mapping the 8 K RAM into the upper half of the 16 K block specified by the RAM signal.
107. Memory locations are accessed when the RAM signal is asserted 'low' to enable IC5, the high order address lines A13,A12,A11, determine the decode output ($\overline{\text { RAMO }}-\overline{\text { RAM }}$) which in turn enables one of the $2 \mathrm{~K} \times 8$ RAM memories IC17 - IC20 asserting a CS logical 'low' signal to pin 18. Eight data lines DO D7 and eleven low order address lines AO - A10 are connected in parallel to the memory bank IC17 - IC20. ICll is an octal bus transceiver and forms a bi-directional buffer to allow data to be either written to the RAM (when ICII pin 1 is 'high') or read from the RAM (when the $\overline{R D}$ signal is asserted 'low').
108. IC3,5,6 provide address bus decoding for the RAM, EPROM, INPUT/OUTPUT port address blocks and are defined as follows :-

Block Select Signal	Description	Circuit reference
$\overline{\text { ROM O }}$		IC7
ROM 1	8 K EPROM $\overline{C S}$	IC8
ROM 2		IC9
ROM 3		IC10
RAM UNS	16 K unsynchronized	Not used at present
RAM	Delayed version RAM UNS defines 16 K block at 4000 H or COOOH depending on link selection	IC12
$\overline{\text { PRT }}$	Memory mapped PORT block select	IC4b
READY	Generates a wait state	IC13
AIT ON PRT GENERATOR)	of clock period (200 ns)	

109. Link 1 allows the RAM block to be selected to normal (NRM) operation location ($4000 \mathrm{H}-7 \mathrm{FFFH}$), or an expanded (EXP) operation (COOOH - FFFF) as shown in Fig. 13. As each IC is accessed individually the low order address lines AO - AlO complete the address to specify which of the 2048 locations are to be read out or written in to. The selected signal is passed directly to IC16 pin 11 (RAM UNS) and also to the RAM synchronizer, ICl2 where the signal is delayed by half of one clock period. This ensures that the address is stable before $\overline{R A M}$ is asserted low.
110. RAM synchronizer IC12. Spurious addresses can occur momentarily as the above address lines change state. These could cause spasmodic operation of the $\overline{R A M}$ signal and as a result undesirable switching of the address multiplexers on boards $A C O 2 / 3$ and $A C 05$. This would also result in unwanted glitches in the display. To prevent this from occurring the start of the RAM signal is delayed until the address is settled.
111. The decoded $\overline{R A M}$ instruction at LKl pin 2 is taken to ICl2 DI input (pin 2). IC12 is clocked by the rising edge of the CLR (pin 3), this will occur when the address bus (and $\overline{R A M}$) are stable. The $0 l$ output of the first flip-flop (pin 5) is taken to ICl6 (pin 17) octal buffer.
112. The second flip-flop of ICl2 will subsequently be clocked at the end of the read or write cycle via IC4d and IC2d for which the $\overline{R A M}$ was asserted by the rising edge of either $\overline{W R}$ or $\overline{R D}$ signals. This clocks ' 0 ' into 02 output (pin 9) which sets Q1 output (pin 5) to '1' asserting RAM 'high', see Fig. 11. Flip flop 2 is preset to '1' when the ALE is returned to logical 'high' via IC2e.

Fig. 11 RAM Select Timing waveforms (AC18)
113. READY instruction, locations $8000 \mathrm{H}-8 F F F H$ are reserved for INPUT/OUTPUT ports thus simplifying decoding. ICl3 Wait-on-port circuit operates when A12, A13 address lines are 'high' giving a logical 'high' READY instruction to ICl pin 35. The operation of the CPU is directed into read and write sequences called Machine cycles. These may contain from 3 to 6 clock cycles (or T states) with the instruction fetch $M C l$ containing a mimimum of four T states and the remainder three.
114. Slower INPUT/OUTPUT devices require more time to respond therefore it is necessary to increase the length of the $\overline{W R}$ or $\overline{R D}$ signal. Provision for this is made by the ability of the CPU to generate a 'Wait clock period'. The READY signal line is sampled by the CPU at the clock period 22 , if this is at logical 'low' a Wait clock period will follow, further Wait clock periods would be generated until the READY signal line is asserted 'high'. One Wait clock period only is required by 6500 , the clock periods and signals generated in the first machine cycle are shown in Fig. 12. ICl3 'Wait-on-port' circuit holds the READY line 'low' for one count (approx. 200 ns) then asserts 'high', the next clock period $T 3$ then follows.
115. A $\overline{P R T}(\overline{P O R T})$ signal is derived when either $\overline{R D}$ or $\overline{W R}$ lines are gated with A12,A13, address lines via IC3b, IC4a, IC4b and then buffered by IC16. PRT is asserted low whenever a port (address $3000 \mathrm{H}-8 F F F H$) is accessed for either a read or write operation. Timing requirements cause some noise spikes on the output latched address lines, these are caused during the transition from Data to Address and are to be expected.
116. Read operations, the 6116 type ICs have two control inputs $\overline{C S}$ (pin 18) and $\overline{W E}(p i n 21)$. Each of the ICs I/O pins (9 - 17) are effectively disconnected from the system bus when $\overline{C S}$ is 'high'. When $\overline{C S}$ is asserted 'low' one of the IC pairs are enabled and the $\overline{W E}$ ($\overline{M E M W}$) signal determines whether a Read or Write operation is to be performed. When $\overline{W E}$ is 'high' and $\overline{C S}$ ' $10 w^{\prime}$ the 6116 will output the addressed read data to the system data bus.

Fetch instruction machine cycle

Fig. 12 Machine cycle Wait state and Ftch instruction (AC18)
117. Write operations, a write operation requires both the $\overline{C S}$ and $\overline{\text { WE }}$ ($\overline{M E M W}$) signals to be asserted 'low' to the point where the earlier of the two goes 'high' again. Addresses must remain stable for the entire write cycle although data inputs may change. The data inputs which are stable during DATA IN period at the end of the write time will be written into the addressed location.
(1) RAM testing. A self test is carried out at power on. All RAM is cleared to ' 0 ' and all RAM is given a non-destructive chequer board pattern test. That is to write and read OAAH and 055H. This test does not check for decoding errors or pattern sensitivity errors, but is fast. Should that test fail LOCAL and SHIFT l.e.d's will flash alternately and an indication of the fault will be shown (see Operating Manual, Chap. 3-1 for details).
(2) EPROM testing. A checksum test is also performed on all EPROMs at power on as part of the SELF TEST. A checksum byte is set to zero at assembly time. A special loader program replaces this byte with a value which results in a checksum of zero. The checksum is the sum of all bytes in the EPROM evaluated modulo 256.
(3) A RAM test also runs continuously in the background during instrument operation. The test is activated every time the delay routine is called. A pointer is maintained to indicate where the test should resume when the delay routine is next activated.

Software Link options (AC18)

118. To enable increased versatility, three Link options are fitted to this board allowing further expansion of address space and the selection of an integral diagnostic ROM. IC5 decodes four 2 K RAM select lines for ICl7,18, 19,20 mapping the 8 K RAM into the upper half of the 16 K block specified by $\overline{\mathrm{RAM}}$.
119. LC6 decodes the lower 32 K of address space in 4 K blocks, pairs of which are gated by IC2l AND gates to give 8 K block select signals for EPROMs
IC7, $8,9,10$. Link 2 allows the upper 4 K of IC9 to be deselected when operating in unexpanded mode to prevent conflict with the display generators located at 5000 H to 5 FFFH . Link 3 allows IC 10 to be mapped at 6000 H - 7 FFFH (expanded operation), or permits its use as an integral diagnostic ROM located at 0000 H should Link 4 he placed into the TEST position. Link 1 selects the $\overline{\text { RAM }}$ block for either NORMAL (4000 H - 7 FFFH) or EXPANDED (COOOH - FFFFH) operation.
120. Option One, this option enables the user to operate with earlier issues of Software (up to Issue 4) with the four links fitted in the positions shown below. The resulting Memory map configuration is also shown in Fig. 13.

LYl pins $2 \& 3$ connected, (NORMAL OPERATION)
LK2 pins 1 \& 2 not connected.
LK3 pins 2 \& 3 connected, (NORMAL OPERATION)
LK4 pins 2 \& 3 connected, (NORMAL OPERATION)
LK4 pins $1 \& 2$ connected, (TEST: in this position diagnostic ROM is selected at location 0000 H - IFFFH in lieu of $\overline{\mathrm{ROM}} \mathbf{0}$).

Fig. 13 Link options memory map (AC18)
121. Option Two (Expanded ROM to 24 K), in this configuration Links 1 and 2 when connected to EXP, access an additional 4 K of ROM via IC9 (deselected in NORMAL mode). Link 4 can be positioned as shown in Option one.

| LY1 pins $1 \& 2$ connected, | (EXPANDED OPERATION) |
| :--- | :--- | :--- | :--- |
| LK2 pins $1 \& 2$ connected. | (EXPANDED OPERATION) |
| LK3 pins $2 \& 3$ connected, | (NOPMAL OPERATION) |
| LK4 (as for Option one). | |

122. Option Three (Additional ROM to 32 K), this option allows for future expansion which has not yet been introduced. Up to 32 K of rom conld be utilized in this configuration if the diagnostic ROM is deleted.

| LK1 pins $1 \& 2$ connected | (EXPANDED OPERATION) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| LK2 pins $1 \& 2$ connected | (EXPANDED OPERATION) |
| LK3 pins $1 \& 2$ connected | (EXPANDED OPERATION) |
| LK4 pins $2 \& 3$ connected | (NOPMAL OPERATION) |

Circuit diagram : Chap. 7, Fig. 6
123. The function of this board is to provide the X Ramp; X Plotter; Y Plotter; Auto zero and Null voltages, these are all controlled by the microprocessor. Other functions include the SYNC sensing circuit, the output of which is fed to a port. Another port is provided for the control of the plotter, providing the pen-lift control and disabling the plotter drives when this facility is not being utilized. Decoding for the GPIB board memory map also takes place on this board. If the microprocessor is not running, no control of any of the above mentioned functions is possible.
124. Decoding of memory map locations is provided by IC2, the board being selected when PRT (port enable) line is low and AlO high. IC3 decodes two Device select lines used on the GPIB board; these are, the $\overline{8291 A}$ SELECT active 'low' signal at pin B6, and GPIB SW active 'high' at pin B7, both are decoded on this board so as to limit the number of lines to be taken to the GPIB option. This reduces the possibility of pick-up and also allows the option to be used without modification in conjunction with other instruments where the address may be different.
125. Four Digital-to-Analogue converters (DACs) ara used on this board, two standard 8 -bit ZN 425 E and two 12 -bit $A D 7542$. All have the analogue voltage output adjusted by Operational amplifiers to the required level and range.
126. AUTO-NULL DAC, this comprises IC6, latch, IC7, DAC, and IC8a, Op-amp giving $\sim \pm 2.5 \mathrm{~V}$ analogue output depending on the data written to the latch. This output is fed to $A C 12$ and is used to adjust the signal channel performance and enhance the accuracy. The output is adjusted during the AUTO-ZERO operation, one set of adjustments per range, per channel. Successive approximations are made until the "correct' voltage is reached, i.e. the most significant bit (MSB) will be toggled, then each bit in sequence, down to the LSB, after each adjustment AC12 will be analyzed by the microprocessor. A table of null data is held by the microprocessor and the correct value is selected as the ranges are altered to suit the signal level and/or channel selected. In calculating each bit a series of readings
(without correction) are taken. Each is compared with an ideal floor value corresponding to the lowest entry in the log conversion table. Since there is considerable noise present at this low power level, averaging of many readings is required. Since the log table is non-linear the effect of averaging many readings is to create an artificially high value. A weighting system is employed to avoid this. Readings above the "floor' value are assigned a weight of ' 1 ' and those equal to the "floor' value " 0 '. The weighting values and not the ADC readings are then averaged and the status of the current bit in the successive approximation is dependent on whether the result is greater than 0.5. Nulling operations assume that no r.f. power is applied. A check is made for a detector present by reading the temperature sensor.
127. Y-RAMP/PLOTTER DRIVE. In a similar way to the circuit described above IC9 latch, IC10 DAC, and $1 / 2$ IC8b provides an analogue voltage output during the PLOT mode. In this mode of operation the PLOTTER Y DRIVE output at pin PL $3-4$ is $0-10 \mathrm{~V}$ and R9 provides the adjustment of the ploter Y-Ramp full-scale deflection.
128. X-RAMP/PLOTTER DRIVE. IC14 is a 12-bit DAC compatible with the microprocessor and has 3 internal 4 -bit registers, Most significant, Middle, Least significant and a latch (or conversion enable). The microprocessor writes in the required digital code and when complete, strobes the latch register - which in turn makes the conversion. The register addressed is determined by address lines AO and Al applied to ICl4 pins 10 and 11 , the output current drawn by IC14 pins 1 and 2 is then converted to a voltage by IC15.
129. IC14 is a multiplying (inverting) DAC with a reference voltage derived by IC1la and D4 which together provide a -10 V reference, pre-set by R12. D4 is a -6.2 V Zener and R13 provides the correct bias. Capacitors C22-C26 ensure a noise free reference. The analogue voltage at ICl5 pin 6 is fed to the Ramp output via PLI and through relay RLl to PL3-1 (Plotter X drive).
130. When the PLOT mode is not in use RLl is de-energized to prevent spurious plotter operation. This is controlled by IC5 and TRI, pen-lift is also controlled by IC5 via R28 and TR2. TR2 is a high power Darlington transistor and is used here because high voltages can be returned from some X Y Plotters (from the pen-lift relay).
131. AUTO ZERO DAC. IC12 DAC requires 4 ports and occupies a contiguous address space 8204 H to 8207 H . Operation is similar to that of IC14 and the same -6.2 V reference voltage is used together with IC12b to give a +11 V reference at ICl2 pin 15. Current drawn by IC12 pins 1 and 2 is then converted by IC13 to a voltage output in the range 0 to -11 V and fed to pin B1. A correctly zeroed display will show noise (grass) at an approximate level of between -60 and -50 dBm . Incorrectly fed voltage will result in the display showing a lower or higher reading - possibly a flat line <-60 dBm or noise around -45 dBa or higher. The voltage output at pin Bl in AUTO ZERO mode is approximately -3 V and -4 V determined by R16 connected to ICllb (-6.2 V reference). The zero value is calculated for each of the three chopper amplifiers. The Autozero routine calculates a table of values which are referenced whenever the input channel of the signal processing system is changed.
132. SYNC INPUT DETECTOR. IC16 detects the "high" >+2.5 V, and "low" <-2.5 V inputs at PL3-5, this is fed in from the rear panel SYNC socket. The detected output is then applied via ICIb,c to the data bus line DO. ICIb,c comprises two tri-state buffers which are enabled by IC2 pin 7 asserting logical 'low' to select this port.
133. During normal operating conditions the X Ramp is used to drive an external sweeper over all or part of its frequency range. In practice a set of values is obtained/calculated in the RaM store as set by the F1, F2, START and STOP figures, entered by means of the keyboard. Fl corresponds to 0 V (0000 H) and F 2 to $10 \mathrm{~V}(\mathrm{FFFH})$ hence Fl \&START \leqslant STOP < 2 .
134. As the 6500 sweeps from START to STOP a value is read from memory corresponding to the position of update across the screen ($0-421$ positions), this is sent to IC14 DAC before the measurement is made at each successive point.

Circuit diagram : Chap. 7, Fig. 7
135. The function of this board is to provide the analogue-to-digital conversion on a $0-10 \mathrm{~V}$ signal input. The microprocessor reads data from this board in log form converted by two look-up Log PROMS rather than in linear form. With an input signal of 10 V , data of 0 dB is read, with a 1 V input, data of -10 dB is read etc.
136. Because the \log table contained in the PROMS is compressed near the upper limits (log law), a Range shifting circuit is used allowing all the data to be included in just two PROMs.
137. The board also contains the latch for the control lines used by the Signal channel (AC12 and AF03/1 boards) for channel and gain selection and for enabling temperature measurements. These are mounted on this board to prevent digital noise created on the microprocessor bus from being injected into the signal processing stages. The ADC Status port IC20 provides information re the conversion - whether valid, top-of-range, bottom-of-range so that necessary corrections can be made if required to the Signal channel gain settings, i.e.

1. Conversion complete.
2. Out-of-range - indicates $A D C$ output word is outside the desired limits.
3. Under/over - Indicates whether gain should be increased or decreased by 10 dB .
4. To ensure accurate operation, the $A-D$ converter is only operated over 90% of its range (10 V to l V , or 0 dB to -10 dB) preventing large quantization errors in \log conversion below this.
5. The 'bottom-of-range' detect is a l2-bit comparator detecting conversions of values below -12 dB ; as each gain stage is a factor of 10 difference in, gain, this results in a 2 dB overlap between ranges. The 'top-of-range' detect selection is performed by OR gates detecting all ' 0 's (the ADC-80 is inverting).
6. IC3 is a 12 -bit ($A D C-80$) successive approximation $A-D$ converter which is capable of performing a full l2-bit conversion in $\simeq 26 \mu \mathrm{~s}$. The speed is such that the conversion is performed without the need for a sample-and-hold circuit (the time is of the same order as the 'free' time in the chopper cycle, for details see ACl2 paragraphs).
7. IC3 could cause unwanted fast switching spikes to be fed back through a common supply line to affect the highly sensitive chopper amplifier circuits on board AC12. This possibility is avoided by supplying board ACll with separate $\pm 15 \mathrm{~V}$ digital supplies.
8. The signal input is first buffered on board AC12 and then fed via pin A7 to IC3. A CONVert, conversion pulse of approximately lus duration (free running without microprocessor intervention) is derived from ACl2 chopper drive signals $\mathrm{fm} / 2(7.8 \mathrm{kHz})$ and is applied to $I C 3$ via pin AlO and IC13d, to initiate each conversion.
9. It takes approximately $26 \mu s$ to carry out the 12 bit data conversion. On completion an END OF CONVERSION (STATUS) pulse is set at pin 22 which is fed to IC20 ADC status port. The microprocessor tests the status port to determine when a conversion is complete. The data read must be completed within $38 \mu s$, before a further conversion takes place. Decoupling capacitors C8, C9, C4, C5, prevent current glitches from causing interference on the Signal channel.
10. Top-of-range/Bottom-of-range detects, IC7, IC8 and IC9 form a 12-bit comparator looking for a value from the $A-D$ converter corresponding to -12 dB (or less) indicating that the current selected range has insufficient gain. If this is confirmed a signal is fed to IC20 pin 6, or pin 4 (via ICl3b). This signal is coupled with a Top-of-range signal generated by IC11, IC12, IC13, when all IC3 data outputs read zero (indicating that a range change is required). The two signals combine at IC20, the UP/DOWN signal determining in which direction the range is to change.
11. Log data PROMs IC18/IC19. To compress the log data contained in these PROMs and maintain similar resolution throughout the $0-10$ dB range, IC4,IC5,IC6 and IC14,ICI5,IC16 perform two separate resolution shifts by adjusting which of the $A D C$ bits address the Log PROMs. This depends on where in the range the data is and is necessary to prevent visual degradation of the signal over the 10 dB range.
12. Consider the memory map shown in Fig. 14, in the area (1), due to the high resolution data at adjacent points would be almost identical. Because of this only the most significant 10 -bits of the $A D C^{\prime} s$ output data are used. Address lines A2-A10 are routed via Range/Resolution Shift 1 ' B^{\prime} inputs and then IC14-IC16 'A' inputs to the EPROM IC18/IC19. Address line ADIl controls IC4-IC6 (via IC10c), $A D 10$ and AD11 lines together control IC14-ICl6 (via IC10a) and IC18,IC19 (via IC10a,IC1Ob) to give an EPROM address once every four $A D C$ counts.
13. In area (2) address line AD11 directly controls IC4-IC6 and the ' A ' inputs carrying lines $A D 1-A D 9$ are routed through to IC14-IC16 'A' inputs to give an EPROM address once every two $A D C$ counts.
14. In area (3) when both $A D 10$ and $A D 11$ address lines are logic 'high' (IC3 is an inverting $A D C$), the address lines $A D O-A D 9$ are connected directly to the 'B' inputs of the second Range/Resolution Shift multiplexer IC14-IC16. This gives an EPROM address on every $A D C$ count.
15. IC18 contains the most significant byte (MSB) of each of the l6-bit log values. ICl9 contains the least significant byte (LSB). The two ports are located in the Memory map at adjacent locations enabling a fast double byte load by the microprocessor. IC18 and IC19 are permanently selected, and only the output enable pin is pulsed when selected. IC22 provides the memory map decoding for the board enabling the reading of LSB, MSB and STATUS, and writing of a control byte to IC21, Range and multiplex latch.

Fig. 14 Log data PROM Range/Resolution (AC11)
Chap. 4

Signal channel (ACl2 \& AF03/1)

Circuit diagrams : Chap. 7, Figs. $8 \& 11$
150. The three signal channels A, B and R are combined on the two boards $A C 12$ and $A F 03 / 1$ and are described in this section together for convenience. AF03/1 board is mounted directly behind the instrument's input sockets to ensure the least possible noise pick-up from coupling wires and connectors, AFO3/l also provides the initial amplification and temperature sensor detection.
151. The detectors used will provide a voltage output in the range $1 \mu \mathrm{~V}$ to $\leqslant 2 \mathrm{~V}$ to cover the dynamic range of the instrument. In the lower voltage output region the output will be proportional to the incident power this is known as the square law region, as input power $\equiv P i \propto V i^{2} \propto V o$.
152. The detectors provide only a d.c. signal which is carried from the detector on two lines (a third, earth line is also used as a voltage reference point), both d.c. signal lines are taken to high impedance inputs with the shortest interconnections possible, otherwise current returns generated would create a voltage which would completely swamp the signal at low levels. An f.e.t. chopper circuit has been used to provide the high gain stability required, any instabilities being limited to a.c. gain/shape variations which can be minimized and corrected for in later stages.
153. If a sweep speed of 100 ms is selected each of the 422 measurements covering all 422 measurement points must be completed in approximately $250 \mu \mathrm{~s}$, therefore at least one cycle of the chopper is necessary to achieve a good response. The speed of the chopper then should be greater than 4 kHz . However in order to reduce the inherent noise and pick-up from the adjacent c.r.t. radiation at line frequency (15.625 Hz) the chopper has been synchronized to half this (7.8 kHz) to provide the required speed and at the same time minimize the effects of c.r.t. scanning radiation by being synchronous with it.
154. Signal processing is controlled by the microprocessor via an 8 bit port, (SET GAIN, location 8804). Three stages, each of which may be switched to either high or low gain give six 10 dB range selections. A three bit signal specifies selection of each of the three measurement channels, A, B, R or optionally selects the detector temperature sensor for that channel. A further 3 bit signal is used for gain switching. The gain is programmed by setting combinations of these bits to select the range that will maintain an output voltage between $1-10 \mathrm{~V}$. Range switching is requested by hardware on AC11 board.
155. The f.e.t. choppers generate a p-p a.c. signal equal to the level of the detector d.c. which is fed to the first stage amplifier. This is preceded by a switchable $\div 100$ attenuator to provide the first gain select switch. All three channels, identical up to this point are then connected to a multiplexer from which a single output is buffered and fed to ACl2 board for further processing.
156. A temperature sensor mounted in the detector head provides data for temperature correction. The sensor comprises a simple base-emitter junction and is biased via a constant current to give a specific voltage at a specific temperature. The coefficient of this junction voltage is used to sense the temperature variations and AF03/l temperature sensor circuit gives an arbitrary, but consistent output voltage from which the actual temperature can
be determined by a calibrated table held in the microprocessor memory. The switching of this is carried out on AC12 and the output is applied to the main $A D C$, IC3 on board AC11. Figs, 3 and 4 show the overall set-up.
157. The signal output from AF03/1 is coupled to AC12 via SKI and SK2, a deglitch circuit at the output of AC12 prevents noise spikes previously
generated by the f.e.t. chopper from either limiting the gain stages or being integrated with the signal. These noise spikes are instead removed by the action of AC12 (IC9) which acts as a sample and hold, holding the voltage present just before the spike occurs to a fixed level throughout the duration of the spike.
158. Two further stages of amplification are employed, the 2nd stage amplifier ICl provides $x A$ and $x 100 A$ gain and the 3 rd stage amplifier IC3 $x B$ and $x 10 B$ gain. The a.c. signal is restored to d.c. by a phase synchronous detector. A further sample and hold circuit operates synchronously with the chopper circuit and takes a small sample of each half cycle of the chopper waveform and maintains this voltage on a capacitor, the difference being detected by an instrumentation amplifier to provide a d.c. signal. The signal is then summed with a Null voltage which is calculated by the microprocessor when an AUTO ZERO operation is correctly performed. This operation is necessary because different $R-C$ time constants on different ranges affect the a.c. signal's shape and must be corrected for.
159. When null values are correctly calculated the output of the DC amplifier stage with no incident power on the detector will be 0 V . The signal output is finally switched by a multiplexer and buffered to provide both signal and temperature voltages to be applied to the $A-D$ converter on board ACll. The signal is also clamped to prevent negative excursions from damaging the $A D C$.
160. Board description (AF03/1). The circuit diagram illustrates only one of the three lst stage amplifier circuits actually fitted. ' A ' channel shown on the circuit has component numbers in the series 100-199. 'B' and ' R ' channels are identical and have for convenience been omitted from the circuit, ' B ' channel components are referenced in the series 200-299 and its output is connected to ICl pin 5. R channel components are referenced $300-399$ and its output is connected to IC1 pin 6.
161. Chopper and lst stage Amplifier, TR101 and TR102 form a series/shunt f.e.t. chopper. The drive signals to the gates are fed wia R124, R125, R128 from IC3 and IC4. IC3 buffers and IC4 inverts the chopper control signals when channels are selected so that the f.e.t.s are alternately switched on. The two control lines (f.m.l and f.m.2) are generated on ACl2, the signals having a specific phase relationship to each other. This ensures that a pre-determined on/off sequence will occur on the f.e.t.s.
162. When 'A' channel is not selected, TRIOl will remain open circuit and TRIO2 short circuit. The stopping of the chopper prevents breakthrough and possible saturation of unused amplifiers. The selection of Channel A is carried out by the gating of f.m.l and f.m.2. R124 and R125 prevent current spikes from being introduced by limiting the available current.
163. R128 ensures that the logic 'high' (on) voltage does not exceed $\approx-1.3 \mathrm{~V}$ (At high power levels the detector could produce a voltage exceeding -1.5 V to forward bias the series f.e.t. and cause breakthrough at the chopper frequency). The junction of R103/TR102 is the point used for injection of a voltage to counteract small offset voltages present due to pick-up and chopper
spikes. This is the AUTO-ZERO voltage and is applied via PLl pin 3 and is derived on board ACO9/2, see paragraph Y-Ramp/Autozero/Plotter drive for details.
164. R101 protects TR101 when no detector prode is connected and acts as the standard load when one is fitted. The chopper earth reference (STAR POINT l) is starred on the p.c.b. to prevent induced voltages from producing erroneous signals. D103/Dl04 prevent the OVA chassis ground and STAR POINT 1 from varying by more than $\simeq 0.5 \mathrm{~V}$. All signal path returns are high impedance to reduce induced d.c. offsets. ClOl a.c. couples the signal to the attenuator and 1 st stage amplifier, the time constant C101/R126 $\simeq \mathrm{ms}$ is chosen to give optimum signal transfer without degradation of the low frequency response which would appear as a slope on the signal. This would result in an accuracy or noise error. C109 removes r.f. pick up by the detector probe cable protecting the lst Stage gain amplifier from saturation.
165. IC102 is a digitally controlled dual, single pole changeover switch and selects either the entire signal if switched to one of the ranges 3 to 6 , or for signals of higher power levels selects the $\div 100$ attenuator. The output of IC102 is fed to the base of TR103, the base resistor being formed by the attenuator when selected. A constant current flows through the base, therefore a different d.c. voltage is generated at the base when the attenuator is switched in. For these reasons the value of base resistance should not fall below $\approx 1 \mathrm{k}$. When $\div 100$ is selected R126 is placed in series and produces a time constant coupled with parasitic capacitance on IClO2 which affects the shape of the signal. This can be countered by adjustment of R105.
166. The first gain stage, TR103 (a specially selected low noise device) and ICl01 give a voltage gain of ≈ 300. R112, R109, R106 and R115, R108 form bias chains defining the current flow through TR103. Gain of the stage is determined by R119, R116 and R107 forming a feedback loop, and Cl03,R107, defines the low frequency response. High frequency response is decreased by Clll reducing some signal noise. This in turn will widen the chopper spikes to some extent, but this effect must be minimal or the integrated chopper spikes will affect accuracy and drift performance. The value of Clll is therefore empirically calculated. R110 and C104 form a d.c. feedback path preventing the effects of temperature variations. C102 and Cllo give protection against radio frequency interference.
167. The overall gain of all three channels A, B and R are set to identical levels adjusting R119, R219 or R319 respectively, see Chap. 5, Maintenance for details. This amplifier typically provides gain of $\simeq 300$ and the noise performance is such that at $\simeq 30 \mathrm{dBm}$ on the 6500. there is $\simeq 0.1 \mathrm{~dB} \mathrm{p}-\mathrm{p}$ noise. As the 20 dB attenuator switches at about -15 dBm the noise figure at -10 dB is similar.
168. ICl multiplexes the three inputs to give a single output signal controlled at pins 1 and 16 . Multiplex control lines Mo and $M 1$ determine which signal is to be selected and which chopper will be driven. . The temperature sensor is also controlled by these lines via IC5. Output from ICl pins 3 and 8 is buffered by the unity gain IC2 where C3 and C4 decouple large current glitches when driving into AC12.
169. TRl, R15,R16 form a simple inverter to drive the lst stage attenuator switch IC102, this is driven by the RO line (PL1/6) from ACll(A3) when instructed from the microprocessor. $C 6$ and $C 7$ remove noise from the $\pm 15 \mathrm{~V}$ supply lines, C10 reduces pick-up noise from the dC09/2 Auto-zero voltage line. IC7, C8, C6 form a +5 V regulator which is referenced to 0 VA . This has the effect of decreasing ground noise significantly and isolating the digital lines from the 0 VA line.
170. Temperature sensor unit, this circuit provides a temperature dependent voltage a temperature. A temperature sensor (base emitter junction) is bonded near to the diode within the detector probe. The junction responds to a temperature change by a linear change in voltage when biased with a constant current. The constant current is provided by Dl,R5,R9, R5 being selected depending on the actual Zener voltage of $D 1$ which can vary by 5%. This then ensures a constant current within 2%. $R 7, R 8, R 10$ sets the reference voltage for IC6 pin 2 and the required gain necessary to cover a $0-50^{\circ} C$ temperature range is provided by R8.
171. Calibration at a simulated $22^{\circ} \mathrm{C}$ is performed via R6 which adjusts the offset voltage. The overall gain is set to $\simeq 70$ with the voltage set within the region 0-10 V. This voltage can be selected to read by the microprocessor using the main $A D C(A C l l)$ by a switch (AC12,IC12 multiplexer). The output at PLI/7 is routed to board ACl2, Cll reduces noise on the signal whilst still maintaining a reasonsably fast response when channels are switched over. A stable output within 1 ms is required.
172. Board description (AC12). The a.c. input signal from A, B or R channel is fed from AFO3/l via SK2 to the de-glitch switch IC9 pin 4 . IC9 removes the chopper spikes developed on $A F 03 / 1$ by becoming high inpedance during the time that these are generated - the voltage is held on C5. Control of IC9 is achieved by a DE-GLITCH(HOLD) control pulse applied at pin 2 , this opens the switch when the majority of the spike has finished allowing 'live' signal to pass through to ICl6. (Actual detection and conversion of the signal is carried out by sampling and holding 'live', not de-glitched signal). The voltage on C5 appears as a horizontal line during the glitch, as the time constant of $C 5$ and the input impedance of ICl6 is of the order of seconds. The resultant output is such that the glitch is switched out and the signal effectively phase shifted. The charge on $C 5$ does not then reflect the glitch as shown in Fig. 15.
173. The value of capacitor $C 5$ has been chosen to allow the buffer stage of AFO3/1 to charge it up sufficiently quickly without creating distortions due to current limiting. However, the de-glitch itself produces another charge glitch which is added to the charge on this capacitor, and if the capacitance is too small an error occurs due to shifting of the voltage by the injected charge.
174. ICl and associated components form the 2nd stage amplifier. IC2,R6 allow operation at a lower gain. $\mathrm{R} 2 / \mathrm{C} 2$, and $\mathrm{R} 3 / \mathrm{C} 3$ filter the $=15 \mathrm{~V}$ supply and R1 minimizes noise by equalizing the input currents. Gain of the stage is controlled by the microprocessor deriving the Rl signal on board AC11(IC21), this is fed via pin (A2) to IC2 pin 2. When R1 is at logic '0' R6 is connected across R4/R5 reducing the gain by a factor of 100. The output of the 2 nd stage amplifier is prevented from reaching the common mode input voltage rating of the next stage by D2/D3 which limit the output to 8.2 V .

Fig. 15 Deglitched input to AC12 2nd stage amplifier
175. The 3 rd stage amplifier IC 3 is similar to the 2 nd stage and provides either approximately xlo or unity gain. Control is achieved by the R2 signal at pin $A 1$, also derived on board $A C 11(I C 21)$, this is connected to IC2 pin 1 and when at logic ' 0 ' connects R15 across R13/R14 reducing the stage gain by a factor of 10 . Signal output level from this stage should be between 2 V and $10 \mathrm{~V}-\mathrm{p}$ when the range/gains are correctly selected. Both ICI and IC3 amplifiers must have a high slew rate performance and are $0 P-01$ low noise inverting type.
176. Phase synchronous detector, the input a.c. signal is restored to d.c. by this circuit so that it may be combined with (NULL) correction voltages and switched to the $A D C$. Samples of the signal are taken on each half cycle by closing the switches on IC4 alternately, with C13 and C14 charging up to the sample voltage during the time the switch is closed. See Fig. 16, these sample and hold capacitors must be able to charge and discharge rapidly to enable small details in a measurement to be faithfully transposed on the displayed output. The time constant is determined by the effective impedance of the switch and the output of IC3 and the value of C13 and Cl4. Together these allow an almost complete sample (up to 98%) to be obtained within the sample period.
177. IC5 acts as an instrumentation amplifier and offers high impedance to Cl3 and $C 14$ so maintaining their charge and allowing a shift of earth reference to the $O V D$ reference ($O V D$ is the same ground reference as is used on $A C 11, A D C$). Precision resistors $R 27-R 30$ ensure that the gain on each mode is the same, linearity errors would result if these differed. Overall sensitivity of the signal channel is adjusted by 233 and the signal is then mixed with the NULL signal (calculated by the microprocessor) by IClOa.

Fig. 16 Signal channel timing waveforms
178. Auto-null, Signal/Temperature circuits, the final signal will be OV for zero r.f. input. Normal operation within a range will provide output volts of $1-10 \mathrm{~V}$. This signal is fed to IC12 pin 4 and the temperature sensor voltage to ICl2 pin 9. Either signal may be selected by the microprocessor with a TO signal, initiated on ACll and fed to AC12, IC12 via pin A4. R39 limits IC7a input especially if probes are not connected to AF03/1 when the voltage could rise to $\simeq 13$ or 14 V causing IC7a to malfunction.
179. R70 and D8 prevent excessive positive and negative voltage from being presented to AC11, IC3. The d.c. output at pin A7 is applied directly to IC3(the ADC) without smoothing - integration of sampling spikes being avoided by ensuring that the $A D C$ conversion is synchronous with the chop rate. This also avoids interference from the c.r.t. line scan.

Fig. 17 Chopper drive signals f.m.1, f.m. 2 .
180. Chopper drive, the initial f.m.x2 line rate clock signal is derived on AC01(IC4 divider) and fed to TR5 buffer and inverter via pin A31. IC8 is a $\div 2$ divider and outputs f.m. and F.m. signals for use in the phase synchronous detector as described in previous paragraphs. Both f.m. and F.m. signals are also used to derive Chopper drive signals f.m.l and f.m. 2 , for A, B, and R Channel selection on board AF03/1.
181. Both f.m. and f.m. positive-going rising edges are delayed at the input of IC15 by the action of C34, R52 and R53. Outputs at pins 2 and 13 are both positive-going at the same time with f.m. 2 having the greater duration and leading the f.m.l signal by a fractional amount. The difference in phase relationship ensures a pre/determined AF03/l f.e.t. on/off sequence of operation. TRI and TR2 are high current buffers and provide sufficient drive to the choppers to avoid the possibilities of pick up via the interconnecting ribbon connectors.

Chap. 4

Ramp circuit (AR04/1)

Circuit diagram : Chap. 7, Fig. 15
182. Two ramp voltage outputs are available at rear panel sockets, a $0-10 \mathrm{~V}$ fixed voltage at $S K 5$ and $0-20 \mathrm{~V}$ variable voltage ramp at $S K 6$. A ramp waveform is generated on $A C 09 / 2$ and fed to the ramp smoothing circuit R13/C4, this removes any noise spikes. Buffer stage IC3a follows to give the fixed $0-10 \mathrm{~V}$ ramp output at SK 5 .
183. $0-10 \vee R E F$ input also from $A C 09 / 2$ is applied via R14/C5 and buffer IC3b to give the required $0-20 \mathrm{~V}$ range, ICla allows the adjustment of the top end of this range with both COARSE and FINE controls R4 and R6 and IC2, -12 V regulator stabilizes the output. The $0-20 \mathrm{~V}$ reference can be shifted by up to 10% of the total range by R5 OFFSET control.
184. Connections to the rear panel from ACO9/2 are via a ribbon connector PL3 and coaxial connectors PLl and PL2 to solder transition ST1 and SK1 and SK2.

Note ...
In earlier models the above connections were made via SKl3 of the motherboard AMO1.

Circuit diagram : Chap. 7, Fig. 17
184. This module is an optional item and only fitted to 6500 when remote facilities are required. The module when connected to the rear panel, allows direct connection from a GPIB talker/listener device and implements the full IEEE 488 specifications (no control function).
185. ICl(8291) GPIB talker/listener integrated circuit is connected to the microprocessor system providing both talker and listener capabilities. IC2-IC5 transceivers are used to translate the negative true logic and act as drivers. IC6d/IC6c provides the logic 'low' level for the receive instruction T/R1 to IC4, pins 7,9; or the talker 'high' level for IC2,IC3, IC4 and also provides the additional buffering necessary for the three ICs in line. Also fitted on the interface module are the GPIB bus terminator loads R1-R6, the address switch SWl. and its buffer IC7.
186. The function of the board is to provide buffering between the general purpose interface bus and the 8291 GPIB handler. The external controller directs the flow of data on the bus and designates when the 6500 is to send data and when it must receive it. The bus uses 16 signal lines to connect all units of a system in parallel. These lines are sub-divided into data, transfer and interface management buses as shown in Fig. 18.

Fig. 18 Interface bus structure
187. Data bus, comprises 8 data input/output lines DO-D7 and is used to transfer the data (commands, addresses and instructions) in bit parallel, byte serial form.
188. Interface management bus, manages the orderly flow of data across the interface and consists of 5 wires carrying the following signals:

Interface clear (IFC); sent by the system controller to clear all device interfaces so that they set to an initial condition.

Remote enable (REN); sent by the controller to enable instruments to be placed under remote control.

Attention (ATN); sent by the controller to indicate that an address or command is on the data lines.

End or identify (EOI); an instrument or controller signal sent to indicate the end of a message.

Service request (SRQ); sent to a controller by an instrument to indicate that it needs service. This can be programed using the 'SQ' program code, details of which are given in the Operating Manual, Vol. l, Chap. 3-1 SRQ (Service Request) Functions.
189. Handshake or data transfer bus, co-ordinates the flow of data and comprises 3 lines which are used for the handshaking process, by which a talker or controller synchronizes its readiness to send data with a listener's readiness to receive data. The handshake signals are:

Not ready for data (NRFD); asserted (low) by a listener when it is active and not yet ready to receive data. Set high to signal its readiness to receive data, $D A V$ can then be signalled if further data is to be processed.

Data valid (DAV); asserted by a talker to indicate that the data it has placed on the data bus has settled and may be accepted.

Not data accepted (NDAC); asserted by a listener when receiving information. from the data lines. Release of the NDAC line tells the data source that new data can be submitted.

190. Bus operation

(i) A sequence of messages may be commenced by the controller asserting IFC on the management bus to set the interface to its initial condition.
(ii) The controller then sets up which instruments are to be listeners by asserting ATN and handshaking the personalized listen address of these instruments over the bus. Similarly the controller designates the talker (only one instrument may talk at a time) by sending its talk address, again with an ATN asserted.
(iii) On release of the ATN command (i.e. ATN) the talker is then able to place data on the data lines DO to D7, the transfer of this is controlled by the handshake process and is received by all addressed listeners. The talker typically concludes the sequence by asserting EOI and the controller then resumes control.
(iv) Both the talker and the listeners may be switched by the controller into an inactive state by asserting IFC or sending OTA (other talk address) and UNL (unlisten) on the data bus.
191. Handshake procedure, the handshake is used whenever data is transferred on the bus. When a signal is asserted the function indicated by the line is carried out, e.g. NRFD is asserted to signify the listener's unreadiness to receive data, and unasserted or removed when ready to receive data. A typical handshake is as follows:
(i) Talker (controller) places a byte on the data bus with DAV initially unasserted to show data is not yet valid.
(ii) When all listeners are ready to receive data NRFD is removed with NDAC at this time asserted.
(iii) After a delay to allow the data bus to settle, talker asserts DAV to show data is valid and may be accepted.
(iv) Data byte is transferred, then listeners assert NPFD. When all the listeners have accepted the byte NDAC is removed to signify receipt.
(v) Talker removes DAV, listeners assert NDAC, and the bus reverts to its initial condition ready for the next data byte, a typical cycle is shown below in Fig. 19.

Chapter 5

MAINTENANCE

CONTENTS

```
Para.
    1 Introduction
    Static sensitive devices
    Safety in the handling and disposal of cathode ray tubes
    Fault location
    DC voltages
    Air cooling
    Board layout and pre-set components
Access and layout
    Layout, top view
    Underside view
    Removal of power supply assy.
    Removal of AFOl/AFO2 assy.
Performance checks
    Overall tests and adjustments
    Functional checks
    Calibration aid facility
    CaLAID operation
Adjustment and calibration
    Voltage checks
    CRT alignment (ATO1/1,ATO2)
    Spinwheel circuit adjustment (AFO2)
    Video mixer adjustment (AC04/l)
    Line display clock oscillator adjustment (ACO1)
    Interlace adjustment (ACOl)
    Deglitch circuit adjustment (ACO2/ACO3)
    Plotter and Ramps adjustment (ACO9/2,AR04/1)
    Signal channel alignment (ACl2)
    Signal channel alignment (ACl2/AFO3/1)
    Temperature sensor circuit calibration (AFO3/l)
Fault location
    Power supply faults
    Signal channel faults AF03/1
    CRT/ATO faults
    CRT replacement
    Processor faults (ACl8) - Self test fault display
    Display faults
```


INTRODUCTION

1. This chapter contains information for keeping the equipment in good working order, checking overall performance, fault finding and realignment procedures. Before attempting any maintenance on the equipment you are advised to read the preceding chapter containing the technical description.
2. Test procedures described in this chapter may be simplified and of restricted range compared with those that relate to the generally more comprehensive factory test facilities, which are necessary to demonstrate complete compliance with the specifications.
3. Performance limits quoted are for guidance and should not be taken as guaranteed performance specifications unless they are also quoted in the performance data in Chap. 1. When making tests to verify that the instrument meets the stated performance limits, allowance must always be made for the uncertainty of the test equipment used.
4. In case of difficulties which cannot be resolved with the aid of this book, please contact Marconi Instruments Ltd., Microwave Products Division, or your nearest Marconi Instruments representative. Always quote the type and serial number found on the data plate at the rear of the instrument.
5. Integrated circuit and semiconductor devices are used throughout this instrument and, although these have inherent long term reliability and mechanical ruggedness, they are susceptible to damage by overloading, reverse polarity and excessive heat or radiation and the use of insulation testers.

Static sensitive devices

6.

The c.m.o.s. integrated circuits used in this instrument have extremely high input resistance and can be damaged by accumulation of static charges (see preliminary pages, Notes and Cautions). Boards that have such integrated circuits all carry warning notices against damage by static discharge. Care must also be taken when using freezer sprays to aid fault finding. These can create a static charge likely to change the programmed memory of (E)PROMS.

Safety in the handling and disposal of cathode ray tubes

7. The risk of implosion of cathode ray tubes although not high, is a real one and in the event of it occurring, severe injuries may be inflicted - heavy pieces of glass moving at high velocity can cut and maim. In order that risk of implosion is reduced to the minimum the following code of practice must be observed in those places where c.r.t's are handled and used.
8. Handling. All personnel must be advised of the hazards involved in the use and handling of c.r.t's. A tube not in use should always be stored in the manufacturer's package, to prevent accidental damage, and in the event of an implosion glass fragments will thereby be contained. It is essential that when lifting or carrying tubes no undue stress is imposed upon the neck or in the area of the neck to bulb flare - never carry or turn a tube over by grasping the neck. Where practical, handling and installation of tubes should be carried out in a screened or separate section, thereby reducing the risk to personnel who are in the vicinity but not involved in the operation.
9. A tube with a scratched or grazed face plate is a potential hazard as any residual mechanical strains present in the glass migrate towards the scratch and link up.
10. When standing a tube on its face, ensure that it rests on a clean surface, free from grit and hard particles likely to cause scratching. A studded rubber car mat provides an excellent surface. A tube's strength can deteriorate with age therefore do not fit or remove the same unnecessarily.
11. Protective clothing should be provided i.e. Heavy weight face screen (BS 2092), Safety spectacles, Chrome leather bib style apron, Mordant leather gauntlet gloves with $150 \mathrm{~mm}\left(6^{\prime \prime}\right)$ cuffs and Chrome leather oversleeves. The clothing should be stored in a suitable cupboard and the contents itemised if practical. Supervisors should ensure that the protective clothing is worn.
12. In the event of an accidental implosion. Personnel cleaning up broken tubes must do so with care, avoiding possibility of contamination of cuts with the coating materials and hands must be thoroughly washed after removing dust from clothing etc., to prevent accidental injestion of chemicals which may be harmful. Because of the possible risk of broken fragments of glass and contamination of the leather with the phosphor coating of the tube it is essential that sleeves, gloves and apron are carefully cleaned and if necessary - disposed of, after being used in connection with a breakage.
13. Disposal of scrap cathode ray tubes, it is important that all personnel are made aware of the hazard of placing tubes, with a good vacuum, into normal waste disposal. The danger is a real one if the tube should implode while being moved or handled. To prevent such an incident it is advised that tubes
be completely smashed before disposal. This task must only be undertaken by competent personnel and no attempt should ever be made to smash a tube or destroy a vacuum without taking adequate precautions to prevent the glass from flying.
14. When destroying a tube, a convenient method of preventing glass scattering can generally be devised by adapting the carton in which the replacement tube was supplied, together with its die-cuts and moulded inserts. The tube should be placed face downwards in the bottom of the carton and the die-cuts and moulds positioned above the bulb and around the neck so as to contain the collapsing glassware. A short section of the tube neck at the base end should be left clear of the protective material sufficient to allow it to be struck with a ballpein hammer used at arm's length, in a hand protected with a leather glove. This operation can generally be accomplished with the hand just inside the carton, the lid of which is used as an extra precaution against the possibility of small glass particles flying upwards from the neck. It is also a wise precaution to leave the lid on the carton for a short time after the glass has shattered to allow the dust to settle, thus preventing the possibility of inhaling it.
15. If the original carton is not available a strong cardboard carton or wooden box can be used just as effectively to contain the flying glass, provided heavy sacking or similar material is used around and above the bulb to prevent the glass flying upwards. It is essential that a round object such as a ballpein hammer be used, tools with sharp corners or points must be avoided. It is also important that the tube should not be struck anywhere but at the neck close to the base pins.
16. The smashed tubes may be disposed of in the same manner as one would dispose of any broken glass and it is advisable to label the carton as containing

> 'GLASS - BROKEN CATHODE RAY TUBE'

Fault location

17. Some aid to fault finding is provided by the typical d.c. voltage and signal levels. Tables given are not extensive but are intended as a pointer to further investigation. It is emphasized that each fault table should be studied having regard for the others, since incorrect operation of a circuit may be caused by malfunction of an associated circuit.

DC voltages

18. Voltages given approximate those which can be expected using a $20 \mathrm{k} \Omega / \mathrm{V}$ meter on a typical 6500 connected to an a.c. supply of $220-240 \mathrm{~V}, 50 \mathrm{~Hz}$.

Air cooling

19. Cooling of this instrument is effected by drawing cooling air through the instrument's lower cover via two slotted entries, each one is covered by a strip of polyurethene foam. The fan unit is mounted on the power supply unit
chassis with the output ducted through another filter mounted in the centre of the rear panel. The fan requires no maintenance but the filters should be cleaned periodically
(a) Withdraw the detachable filter, first removing the cover from the rear panel. Clean all filters and the cover with a suction cleaner and, if necessary, wash with hot soapy water. Under no circumstances should solvents be used.
(b) Shake the filters dry, if necessary, and replace.

Board layout and preset components
20. Printed circuit board component layouts can be seen in Chap. 7, Servicing Diagrams. Preset and select-in-calibration (SIC) components are also identified there. A further plan view of the presets and their function can be seen in this chapter. Edge connector destinations are also shown in Chap. 7, these have two rows designated ' A ' and ' B '. Row B is nearer to the c.r.t. assembly. Edge connector pins are numbered 1 to 32 with pin 1 nearest to the front panel. Boards must be inserted with components side nearest to the c.r.t. assembly.

ACCESS AND LAYOUT

Layout, top view, see Fig. 1
21. To remove top and bottom outer covers simply unscrew the two retaining screws situated on the rear panel; slide each cover to the rear and lift off. Access to the boards ACOI - AC12 can be obtained by unscrewing the clamp card retainer screws until the slides inserted in side and centre frame can be withdrawn and the retainer removed.
22. An extender board (offered as an Optional accessory) may be used to place the boards into the servicing position as shown in Fig. l. Some boards will not operate correctly in such a position. Further information on this is given in the calibration procedures.
23. CRT Access A Direct access to the c.r.t. is restricted as a safety measure and only competent personnel who are familiar with the hazards involved should lift the tray covering the c.r.t. unit. The tray is secured with six screws, three of which are accessible on the outside of the left-hand side panel and three on the centre support frame. Remove the four screws nearest to the front of the instrument and slacken the two rear screws to allow the tray to pivot into the vertical plane, re-secure these again to maintain the servicing position.

WARNING \cdots 央

When lifting the tray ensure that movement of the cableform is not impeded by the neck of the c.r.t. or its associated ATO2 which is positioned around the neck of the tube.
24. Before servicing also read the paragraphs in this chapter relating to Safety in the handing and disposal of cathode ray tubes and c.r.t. fitting and display setup, safety precautions.

Layout, top view.

Underside view, see Fig. 2
25. Secondary fuses on board ARO7 are all low voltage and so are all readily accessible, if however access is required in the high voltage area it is essential that the supply voltage is first disconnected from the instrument. Only then should the power supply cover plate be removed to reveal board AR08, SK1, SK2, fuses Fl and F2, and the push bar switch Sl.
26. Access to board $A F 03 / 1$ can be obtained by first disconnecting the molex connector $S K 1$ and the conhex r.f. connector, remove the four securing screws on the top of the cover plate and this can then be removed.

Removal of power supply assy.

27. In normal circumstances it should not be necessary to remove this except in the event of either fan motor renewal or major servicing, however if required carry out the following procedure :-
(1) First detach the rear end of the side carrying handles by first prizing off the plastic cover to disclose the end cap and handle securing screws. Unscrew the handle screw followed by the end cap screw to release the rear side handle fixing. Now remove the eight power supply assy. retaining screws shown in Fig. 2.
(2) Disconnect AC09/2, PL1, PL2, and PL3; if the optional GPIB interface is fitted also disconnect SKl4. Carefully pull the power supply assy. to the rear taking care not to distort the push bar or switch $S l$ when separating the unit.
(3) On replacement it may be necessary to mechanically re-adjust the push bar to operate the switch Sl correctly. This is easily done by slackening the retaining screw in the distance piece situated in the centre of the push bar then altering the effective length as necessary before re-securing the screw.

Removal of AFO1/AF02 assy.

28. First remove the right-hand side front handle trim infill and handle as shown in Fig. 3b. Then remove the front trim infill followed by the trim strip held by four screws. Four further screws, two on the top and two on the bottom secure the assy. The two bottom screws can be easily accessed using a long handled screwdriver. A mounting plate is also used to position the assy. correctly, this is placed on top of the assy's. bottom flange.
29. To avoid possible damage on $A F O 2$ board ensure that PL2 is disconnected before attempting to lift out the assy. It may also be necessary to remove some of the buttons from keyboard $A F O 1$ to enable sufficient clearance to pull the assy. clear of the front panel. These can easily be removed by puliing firmly on the button. Finally disconnect AFU2, PLl and withdraw the assy.

Fig. 3a Front trim strip and AFO1/2 assy. securing screws.

Fig. 3c AFO1/AFO2 assy. removal.

Fig. 3 AFOI/AF02 assy. removal
Chap. 5

PERFORMANCE CHECRS

Overall tests and adjustments

30. Many of the tests described in this chapter are simplified and of restricted range compared with those which would demonstrate compliance with the specification as described in paras. 1 to 4 . If the results quoted in the following paragraphs are not obtainable refer to the related fault finding and re-calibration sections.
31. Check that the correct mains supply voltage is applied and that the correct fuses are fitted, for details see Operating Manual. To prevent damage to the c.r.t. coating initially turn the intensity control to minimum then select SUPPLY ON. The microprocessor should be running, this may be checked by pressing SHIFT key which will cause SHIFT l.e.d. to toggle on/off.
32. Self test and a simulated failure can also be checked as described in the Operating Manual Chap. 3-1. Also connect the required microwave sweeper to the 6500 and terminations, connectors and cables necessary as listed in Chap. 3-1 following Fig. 2 .

Functional checks

33. Connect the $6511 / 6512$ Detectors then perform the following checks :-

Intensity controls	-	Check Intensity, Graticule Line B then Line A controls for smooth operation with no flaring of the trace.
Brightline control	-	Check smoothness of operation and correct directional sense i.e. clockwise moves brightline right and vice-versa.
Check keys	-	Ensure correct mechanical movement and the operation of all keys in the following order :-
SHIFT :	-	Check operation of l.e.d. also.
SWEEP :	-	NORMAL AVERAGE FREEZE
LOCAL :	-	Check only for mechanical operation if GPIB interface is not fitted.
MODE :	-	$A, B, A \& B, R,-R$ STORE (Cancel with NORMAL) SUB MEM (Cancel with NORMAL) UNITS.
SET :	-	DATUM RANGE START STOP

DISPLAY : \quad| | HIST (Line A) |
| :--- | :--- |
| | LINE (Line A) |
| | HIST (Line B) |
| | LINE (Line B) |

PLOT		
BRIGHTLINE :	-	$\Delta \mathrm{F}$
		MAX
		MIN
		MARKER
AUTO :	-	F1-F2
NUMERIC KEYPAD :	-	(Use DA
\& ENTER		

34. Check the correct operation of each of the signal channels by ensuring that the detector will auto zero correctly when connected to each channel in turn and gives the correct c.r.t. display.

Detector input
Connect to A input, auto zero and check :-

Connect to B input, autozero and check :-

Connect to R input, autozero and check :-

Display
A \quad Ready
B No probe
R No probe
A No probe
B Ready
R No probe

A No probe
B No probe
R Ready

Note

The ZERO facility should only be used with no incident r.f. at the detector. When each channel has been successfully zeroed select AVERAGE, each channel should display a power level between -55 and -61 dB .

Calibration aid facility

35. The CALAID function provides a visual indication of the state of the signal channel amplifiers. When in CALAID it is possible to disable all temperature compensation in the instrument.

Fig. 4 CALAID display
36. The signal channel gain may be programmed in 10 dB steps giving the six ranges shown in the CALAID display. When operating in its normal CYCLE mode, CALAID programs the signal amplifier for each range in turn from 1 to 6. The average of a number of power measurements is calculated for each range. If the readings are valid; that is, the range selected provides neither too little nor excess amplification, the result (corrected for square law deviation and temperature as usual) is displayed in the POWER column on the c.r.t. If a valid reading cannot be obtained for the range, a field of blank characters is written to the screen.
37. Because the ranges overlap by approximately $1 d B$, it is possible to obtain valid readings on two ranges simultaneously. The instrument is calibrated to ensure that the same reading is obtained on both ranges in the overlap region. The BAR-CHART display provides a graphical representation of the tracking between ranges. If two adjacent ranges give valid readings the bar chart height varies to represent the error.
38. The bar chart display is deliberately slowed by averaging to remove noise effects. The full screen height of the BAR-CHART display is 1 dB with the reference line representing 0 dB tracking error between ranges. If the bar aligns with the reference line or is within approximately $1 / 8^{\prime \prime}$ of the reference line, range to range tracking is better than 0.02 dB .
39. When in CALAID - issue comnands with the numeric keypad and to exit use a MODE or NORMAL key.
(1) Select Channel A with numeric key 7 Channel B with numeric key 8 Channel R with numeric key 9
(2) Select or deselect

- Select SHIFT and SECRET keys.
temperature compensation
(3) Select normal range cycle operation with '0'
- This mode is automatically selected when CALAID facility is first initiated.
(4) Hold range $1-6$, flashing
- Range held corresponds to numeric key pressed, readings are taken repeatedly on the selected range.

Notes ...

(1) To release from a held range either press 0 to resume cycling or re-select the required channel e.g. press 7,8 or 9.
(2) The BAR CHART reference line on the screen represents zero tracking error between ranges - full screen range 1 dB .

TABLE 1 TEST EQUIPMENT

Item	Description	Minimum use specification	Recommended model
a	Multimeter	Greater than $20 \mathrm{ks} / \mathrm{V}$	GEC Selectest
b	Oscilloscope	Bandwidth : 50 MHz Volts/division : 5 mV to 20 V	TELEQUIPMENT D83
c	Oscilloscope probe		
©	RF power source	Variable from -50 dBm to 0 dBm	6058B
e	50 MHz 0 dBm Calibrator box	With current calibration certificate	Available in Power meters Type 6950 or 6960
f	Detector 6511 (Std)	Standard detector 6511 with calibration certificate	6511
g	Detector 6511 (General purpose)	Specification as laid down in $H 6500$ Vol. 1 Chap. 1	6511
h	Digital voltmeter	$\left\lvert\, \begin{aligned} & \text { DC volrs } 0.1 \mathrm{~V}-100 \mathrm{~V} \\ & \text { Accuracy } 0.001 \% \end{aligned}\right.$	DATRON 1061 or HP 3456A

TABLE 1 TEST EOUIPMENT (continued)

Item	Description	Minimum use specification	Recommended model
i	Sweep oscillator \& plug in Oscillator unit	For details of use see 46500 Vol. 1 Chap. 3-1 Preparation for Use paragraphs	$\begin{aligned} & \text { MI 6700B } \\ & \text { MI 6600A/1 Series } \end{aligned}$
j	Logic probe		
k	Variac		
1	Resistance box (with 6511 probe connector)		
m	Electro-static voltmeter	Voltage range $0-15 \mathrm{kV}$	
	Special Tools and alignment aids		
\square	Card extender	Tised to elevate boards ACO1-AC12 into a servicing position	$\begin{gathered} \text { MI (Microwave } \\ \text { products) } \\ 3964-268 \end{gathered}$
0	IC Test clips	16 pin dual-in-line (2 off)	-
p	Alignment graticule	As per dwg. number 2200/346 Issue 1	MI(Microwave products)
q	Pot/shift ring adjuster	\square	
r	Width/Linearity core adjuster		${ }^{1} 25$
	Fibre Rod		

ADJUSTMENT AND CALIBRATION

Voltage checks

Test equipment : items h, Digital voltmeter
k, Variac
b, c, Oscilloscope \& probe
40. $210-250 \nabla$ ($50-60 \mathrm{~Hz}$) Range setting. Ensure that the mains input (voltage selector on the rear panel is set for the above range and that the correct fuses are fitted in F1 and F2 (600 mA time delay). Connect the 6500 input supply voltage via a variac set to give a voltage output of 230 V a.c.

Chap. 5
Aug. 83 (Am. 1)
Page 13
(1) Switch on a.c. supply, check that fan unit is running.
(2) Locate the power supply output tags on AM01 Motherboard and check that each of the following stabilized d.c. voltages is within the limits shown in Table 2. Check also that the maximum ripple level is not exceeded.
(3) Reduce the variac voltage to give an output of 210 V a.c. and check again that the limits shown in Table 2 are not exceeded. Raise the variac voltage to give an output of 250 V and once more check that Table 2 limits are not exceeded.

TABLE 2 DC VOLTAGES

Range	Output Voltage		Max ripple	
	Min	Max	Level	Connections
+5 V (OVD)	4.75 V	5.25 V	7 mV	AMO1 (Motherboard)
+24 V (OVD)	22.8 V	25.20 V	10 mV	tag positions
+15 V (OVD)	14.25 V	15.75 V	5 mV	are identified
-15 V (OVD)	14.25 V	15.75 V	5 mV	in Chap. 7 Fig. 18a
+15 V (OVA)	14.25 V	15.75 V	5 mV	AM01 printed circuit
-15 V (OVA)	14.25 V	15.75 V	5 mV	connections.
+12 V	11.10 V	12.90 V	10 mV	Board AR03 pin 7.

41. 105-120 V (50-60 Hz) Range setting. Ensure that the mains input (voltage selector) on the rear panel is set for the above range and that the correct fuses are fitted in F1 and F2 (1.25 A time delay). Connect the 6500 input supply voltage via a variac set to give a voltage output of 115 V a.c. then carry out the checks detailed in the previous paragraph steps 1 to 3 except that in step 3 variac voltages set should be lowered and raised to 105 V and 120 V respectively, limits given in Table 2 are unchanged.

CRT alignment (ATO1/1, ATO2)

Test equipment: items a, Multimeter
p, Alignment graticule
q, Pot/shift ring adjuster r, Width/linearity core adjuster
42. If a replacement c.r.t. is to be fitted, instructions on procedure and precautions to be taken whilst doing so are given in the Fault location and Repair section of this chapter. Note that because the c.r.t. is scanned vertically in 6500 the FRAME controls affect the horizontal picture characteristics and the LINE controls affect the vertical characteristics.
43. Remove the left hand side front handle and slide the alignment graticule into the filter slot on the front panel observing the correct orientation. Centre all controls on AT01/1. Turn the front panel INTENSITY control fully clockwise. Remove all correction magnets from the yoke if fitted and ensure that the yoke fits snugly against the c.r.t. bulb.

Fig. 5 ATOl/1 Calibration component chart

\triangle WARNING LIVE PARTS \triangle

44. The c.r.t. electronics employs high voltages. Use only the special test equipment items when making adjustments within the c.r.t compartment. Avoid touching any wire links or test points on ATO1/L,ATO2, scan coil connections. It is advisable to avoid placing more than one hand into the compartment. Keep the other hand in the pocket to avoid touching earthed surfaces.
45. Switch on the 6500, a test pattern will be generated during the power-on self test. To maintain the test pattern hold down any key. Wait until the front panel l.e.d's flash before releasing the key. The test pattern can also be generated without switching off the instrument simply by short circuiting the reset pads situated on board ACl8 while holding down a key. These can be identified by reference to Chap. 7, Fig. 5a Component layout diagram.
46. Allow 30 minute's warm-up time before commencing the realignment then proceed with the alignment of board ATOl/l as follows:-
(1) Set multimeter to d.c. V, 100 V full-scale. Connect the negative lead to TP2 and the positive lead to TP9. Adjust R17 (BLACK LEVEL) to obtain a reading of $70 \mathrm{~V} \pm 1 \mathrm{~V}$. Note that the high frequency response of the video amplifier is reduced by the impedance of the multimeter, but this does not affect the d.c. measurement being made.

Remove the multimeter probes and adjust R46 (BRILLIANCE) to give a visible display.
(2) Adjust R48 (FRAME LOCK) to give a synchronized display. When a stabilized display is obtained, re-adjust $R 48$ to a point halfway between the setting at which a stabilized display is obtained and the end of the potentiometer's travel or the point at which synchronization is again lost.
(3) Re-adjust 446 (BRILLIANCE) to obtain a visible background raster. Adjust front panel INTENSITY to give the clearest possible display.

47. Line adjustment

(1) Adjust R 31 (SHIFT) to centralize test pattern with respect to the displayed raster.
(2) Adjust Ll (LINE AMPLITUDE) for correct picture height.
(3) Rotate L2 (LINE LINEARITY) inductor magnet to obtain optimum linearity using the vertical linearity lines on the test pattern as a guide.
(4) Remadjust LI (LINE AMPLITUDE) if necessary.

48. Frame adjustment

(1) Adjust R3 (FRAME AMPLITUDE) for correct picture width.
(2) Adjust R6 (FRAME LINEARITY) for optimum linearity using the horizontal linearity lines on the test pattern as a guide.
(3) Re-adjust R3 (FRAME AMPLITUDE) if necessary.
49. Picture centring. Centre the display by rotating the Shift rings on the deflection yoke assembly. Use the central cross on the test pattern and the centre marking on the test graticule as a guide.

Note ...
Adjustments to L1,L2,L3 and R6 are interactive - repeat these if required.
50. Picture shape adjustment. If necessary rotate the scan coil assembly to square the c.r.t. picture. Correction magnets may now be mounted on spigots on the deflection yoke. Adjust the correction magnets to obtain the best possible picture shape. Ensure that the outside edge of the test pattern is square, and fits within the two scribed lines of the test graticule.

Fig. 6 CRT coil assy. adjustments
51. Straighten top and bottom edges and vertical sides using rotateable magnets corresponding to those positions. More than one magnet may be placed on a spigot if required. Add corner correction magnets if required.

Note ...
Adjustments made previously to L1,L2,R3 and R6 are interactive - repeat these if required.
52. Reduce brightness using R46 (BRILLIANCE) control until blank raster areas just disappear. It is important to note that the correct operation of the video mixer depends on this adjustment. With the front panel INTENSITY control adjusted for the clearest display, adjust R44 (FOCUS) for optimum focus. This can best be achieved by focusing on alphanumeric characters e.g. the 'SELF TEST' message.
53. Finally fix the coil assembly, magnets and shift rings using a suitable adhesive such as 'Silastic 732 silicone adhesive/sealant'. Take great care not to disturb the picture shape magnet and carry out a final check on the c.r.t's alignment before allowing the adhesive to set.

Spinwheel circuit adjustment (AF02)

54. The purpose of this adjustment is to ensure the displayed 'Brightline' does not drift due to spurious pulses generated by the 'Spinwheel' circuit on AF02. Carry out the following procedure :-
(1) Adjust AF02 (R27) to mid travel. Switch on the 6500, and await the display.
(2) Attempt to centre brightline using the front panel rotary control.

Note ...
The brightline may drift to right or left.
(3) Rotating R27 anticlockwise from the mid-position eventually causes the brightline to drift left, and similarly rotating $R 27$ clockwise causes brightline to drift right. Adjust therefore $R 27$ to minimize drift in either direction. After this ensure that clockwise rotation of the front panel rotary control moves the brightine smoothly to the right, and anticlockwise, to the left.

Video mixer adjustment (ACO4/1)

55. Display quality of the video mixer is set up in manufacture and only small adjustments should be required to improve the display. Switch on 6500 and allow 10 minutes before attempting any adjustments. Confirm that the raster is NOT visible on blank area of the display. If it is visible it will be necessary to re-adjust ATOl/l Brightress control R46, see Picture shape adjustment paragraphs.

ACO1/R6 FRAME SYNC. PULSE WIDTH
AC01/R8 INTERLACE
ACO1/R11 LINE DOT CLOCK
ACO2/R1 LINE A DE-GLITCH
AC02/R3 LINE A DE-GLITCH

ACO3/R1 LINE B DE-GLITCH
AC03/R3 LINE B DE-GLITCH
ACO4/1,R5 LINE A VIDEO
ACO4/1,R6 LINE B VIDEO
AC04/1,R7 BRIGHTLINE VIDEO
AC04/1,R8 GRATICULE VIDEO
AC04/1,R9 MARKER VIDEO 〈NOT USED> AC04/1,R10 ALPHA VIDEO

ACO9/2,R9 PLOTTER Y VOLTAGE GAIN ACO9/2,R12 RAMP/AUTO-ZERO REFERENCE

AC12/R5 STAGE 2 AMPLIFIER GAIN
AC12/R14 STAGE 3 AMPLIFIER GAIN
AC12/R33 SIGNAL OUTPUT LEVEL

AF02/R27 SPINWHEEL STABILITY

Fig. 7 Preset potentiometer adjustment chart
56. Set Graticule, Line A and Line B intensity controls to maximum and make adjustments as necessary to any of the display components following. The intensity of any component may be increased by rotating the corresponding potentiometer anticlockwise

Adjustment

Alphanumerics	R10	1 (Brightest)
Line A	RS	3
Line B	R6	3
Brightline	R7	2
Graticule	R8	4 (least bright)
Small		

Note ...
After adjustment has been made to the above controls check that with all front panel controls at minimum (except INTENSITY) all the above components are displayed. Maximum INTENSITY will result in slight smudging of alphanumerics i.e. alpha is the brightest component of the display.

Line display clock oscillator adjustment (ACO1)
57. Switch on the instrument and allow 15 minutes warm-up. Adjust the front panel intensity controls to obtain a clear display of the Line A trace. The line display clock oscillator determines the vertical position of the A and B traces on the display. If the oscillator adjustment is incorrect, the position of A and B trace against the vertical scale will not match the brightline reading. In certain cases, when displaying in 'HISTOGRAM' mode the trace may 'wrap around' from top to bottom of the graticule area - giving the appearance of two traces.
58. Select a line display on memory A selecting SHIFT and MEM A. Note that at switch-on the memories are initialized to zero. Display the trace as a line - Datum $0.5 \mathrm{~dB}(\mathrm{~m})$, Range $0.1 \mathrm{~dB} /$ Division by selecting LINE and AUTO. Then adjust ACO1,R1l until the trace aligns with the horizontal graticule line corresponding to 0 dB .

Interlace adjustment (ACO1)

Test equipment : items b,c, Oscilloscope \& probe
n, Card extender
o, IC test clip
59. Place ACOl (Timing circuit) on the card extender, connect the test clip to ICll, switch on the instrument and allow 15 minutes warm-up. Adjust the front panel intensity controls for a clear display of alphanumeric characters. The c.r.t. display is interlaced i.e. alternate scanned frames occupy slightly different positions on the c.r.t. This adjustment sets up an interlaced display.
60. Set the oscilloscope controls as follows : Sensitivity $2 \mathrm{~V} / \mathrm{div} .$, Time base $10 \mu \mathrm{~s} / \mathrm{div} .$, Trigger slope -ve and connect oscilloscope probe to IClI pin 7. Rotate $A C 01, R 8$ fully clockwise and note that the display is no longer interlaced (alternate scanned frames overlap and the alphanumeric characters appear to consist of discrete dots). Rotate R8 anticlockwise until the negative-going pulse length is $48 \mu \mathrm{~s} \pm \mathrm{l} \mu \mathrm{s}$. Observe that the display is now interlaced i.e. dots forming the alphanumeric characters merge together.

Deg1itch circuit adjustment (ACO2/ACO3)

Test equipment : items b,c, Oscilloscope \& probe
n, Card extender
o, 16 pin dual-in-1ine $I C$ test clip
61. Glitches occur on the line display if the microprocessor accesses the line display memory at the same time as the line generator circuit. If this is suspected it is possible to distinguish the glitches from the signal channel by selecting FREEZE. When in this mode there is no line memory update so no glitches can occur. However, signal channel noise present at the time of pressing FREEZE will remain on the display.
62. Elimination of glitches is carried out as follows :-
(1) Place ACO 2 (Line A display generator) on the card extender. Connect the test clip to ICS and switch on the instrument. Allow 15 minutes warm up and select the following keys, Channel A, SHIFT, SPEED, 0 (70 ms sweep speed).
(2) Set the oscilloscope to $2 \mathrm{~V} / \mathrm{division}$ Sensitivity, $1 \mu \mathrm{~s} / \mathrm{division} \mathrm{Time}$ base and Trigger slope to -ve.
(3) Adjust R1 to give a negative-going pulse of 5 us at ICS pin 4 .
(4) Adjust $R 3$ to give a negative-going pulse between 1 and $2 \mu s$ at IC5 pin 2.

Note ...
Pulses at IC5 pin 12 occur only when there is a conflict between line generator and processor memory access. This depends on the sweep timing which varies slightly according to the range and datum selected as well as the value of the measured data. With no probes connected and a consequent measured level of approximately -60 dBm , a range of $0.1 \mathrm{dBm} /$ division (obtained by selecting AUTO) will give a signal which may be displayed satisfactorily on the oscilloscope. Some adjustment of the oscilloscope controls may be required to obtain a usable trace.
(5) Confirm that no glitches are now visible on the trace. Repeat the procedure for ACO 3 selecting Channel B.

Plotter and Ramps adjustment (AC09/2, AR04/1)
Test equipment : item k, Digital voltmeter
63. Switch on, allow 15 minutes for warm-up. Connect the d.v.m. via a BNC connector to the RAMP (fixed $0-10 \mathrm{~V}$) output on the rear panel.
(1) Switch the ramp output to 10 V selecting SHIFT and F 2 - adjust AC09/2, R12 for $10 \mathrm{~V} \pm 10 \mathrm{mV}$.
(2) With the ramp output set to 10 V connect the d.v.m. to PLOTTER X output and confirm that no voltage is present - i.e. ACO9/2, RLI is open circuit.
(3) Connect the d.v.m. to PLOTTER Y output, select 'NORMAL' key to clear any messages then select 'PLOT' select option 1 'Set pen bottom left' and confirm that PLOTTER Y output voltage is now $O V$ $\pm 100 \mathrm{mV}$
(4) Select option 2 'Set pen top right' and check that PLOTTER Y output voltage is now $10 \mathrm{~V} \pm 50 \mathrm{mV}$, if not adjust $A C 09 / 2, R 9$ to achieve this.
64. Connect the d.v.m. to the RAMP (Variable $0-20 \mathrm{~V}$) rear panel socket then select SHIFT, F2, and carry out the following adjustments :-
(1) Adjust C (COARSE) and F (FINE) presets on the rear panel for 20 V $\pm 50 \mathrm{mV}$.
(2) Select SHIFT, $F 1$ and adjust OFFSET control on the rear panel for $0 V$ $\pm 50 \mathrm{mV}$.

Repeat steps (1) and (2) to obtain optimum readings.

Signal channel alignment (AC12)

Test equipment : items b,c, Oscilloscope \& probe unit
o, Two 16 pin dual-in-line $I C$ test clips
n, Card extender
65. Place board ACl2 on the card extender and fit IC test ciips to IC6 and IC14. Switch on, allow 15 minutes warm-up. Connect earth lead of the oscilloscope probe to TP5 for all measurements. Set the oscilloscope trace controls as follows :-

```
Vertical sensitivity - 2.0 V/division
Time/division - 2.0 \mus/division
Trigger slope - -ve
```

66. Connect the probe to IC6 pin 9 and adjust AC12,R32 to set the negativegoing pulse length to $12 \mu \mathrm{~s} \pm 0.5 \mu \mathrm{~s}$. The position of R32 is shown in Fig. 8. Connect the probe to IC6 pin 7 and adjust AC12,R31 to set the negative-going pulse length to $12 \mu \mathrm{~s} \pm 0.5 \mu \mathrm{~s}$.
67. Connect the probe to ICl4 pin 6 , set the oscilloscope to positive triggering and increase the Time/division to $5.0 \mu \mathrm{~s} / \mathrm{division}$. AC12,R50 to set the positive-going pulse length to $45 \mu \mathrm{~s} \pm 1 \mu \mathrm{~s}$.
68. Connect the probe to IC14 pin 9, set the oscilloscope back to negative triggering and adjust $R 61$ for a negative-going pulse length of $20 \mu s \pm 1$ is.

Fig. 8 Calibration component location chart (AC12)

Signal channel alignment (AC12/AF03/1)

Test equipment : items d, RF Power source
e, $50 \mathrm{MHz}, 0 \mathrm{dBm}$ Calibrator
f, Detector 6511 (Standard with calibration certificate)
g, Detector 6511 (General purpose)
69. Ensure that ATOl/l tray is screwed down and board ACl2 is plugged into the card frame, also ensure that no extender cards are in use on any other board for the duration of this alignment. Switch on all test equipment on the 6500 and allow a 30 minutes warm-up.

Notes ...
(1) The standard 6511 should be maintained at the standard temperature of $22^{\circ} \mathrm{C}$ and should be handled as little as possible.
(2) Ensure that the AUTOZERO operations are carried out correctly with no r.f. applied.
(3) Familiarity with the GALAID facilities is essential before attempting the following alignment. Instructions on the use and operation of the facility can be found in the beginning of this chapter if required.
70. Set each of the following potentiometers to approx. mid-travel, location of chese are shown in Fig. 8 and 9.

AF03/1	R105	(Channel 'A' Sensitivity)
AF03/1	R205	(Channel 'B' Sensitivity)
AFO3/1	R305	(Channel 'R' Sensitivity)
AF03/1	R119	(Channel 'A' Range 2-3 level adj.)
AFO3/1	R219	(Channel 'B' Range 2-3 level adj.)
AF03/1	R319	(Channel ' R ' Range 2-3 level adj.)
ACl 2	R5	(Stage 2 Amp. gain)
AC12	R14	(Stage 3 Amp. gain)
ACI 2	R33	(Signal output level)

Connect a 6511 detector to the RF source and Channel "A" on the 6500 , switch RF off and perform the AUTOZERO on the 6500. Check that no error is produced for Channel "A" - possible error messages are "Fail" (accompanied by Error 42) and "No Probe".

71. Select CALAID, switch off the temperature correction and select Channel A. Switch the external RF source level on and adjust the level to give approximately -1 dBm on Range 1.
(1) Using the "BAR CHART" display and numeric information, adjust ACl2,R14 to give identical readings on Ranges 1 and 2. At this point, the "BAR CHART" level will coincide with the reference line. Note that the response of the "BAR CHART' is deliberately slowed.
(2) Reselect Channel 'A" on CALAID pressing numeral 7 to reset "BAR CHART. Wait 20 seconds for any deviation.

Note ...
The BAR CHART facility only operates when two adjacent ranges give readings. If only one range shows a valid reading re-adjust the RF level to obtain a reading on both ranges.
(3) Adjust the external $R F$ source level to give approximately -16 dBm on Range 3, and adjust AF03/l,R119 to set up range change 2 to 3 using the BAR CHART.
(4) Adjust the external RF source level to give approximately -36 dBm on Range 5 , and adjust $A C 12, R 5$ to set up range change 4 to 5 using the BAR CHART.
72. Connect the standard detector/calibrator box to Channel " A - of the 6500 . Then with calibrator r.f. level off perform the AUTOZERO function. Select the 6500 to DATUM 0.5 dBm , RANGE $0.1 \mathrm{dBm} / \mathrm{div}$. then switch calibrator on, wait 30 seconds and adjust $A C 12, R 33$ to obtain a reading of 0 dBm. When this measurement is within $\pm 0.03 \mathrm{dBm}$ select $A V E R A G E$ to facilitate setting to within $\pm 0.01 \mathrm{dBm}$. Take the reading from the brightline display at the top of the screen. Repeat the adjustments until reaching the optimum. Typically, no more than two repetitions will be required.
73. Channels ' B^{\prime} and $\left({ }^{-} R^{\prime}\right)$ can now be set up in the following manner :-
(1) Connect the 6511 detector from the RF source (RF level off) to Channel " $B^{\prime}\left({ }^{-} R^{\prime}\right)$ on the 6500. AUTOZERO and check that no errors are displayed for Channel ${ }^{\prime} B^{\prime}\left({ }^{\prime} R^{\prime}\right)$. Select SHIFT, CALAID and confirm that the temperature correction is OFF.
(2) Select Channel " B^{\prime} press numeral 8 (Channel ' R " press numeral 9) switch RF source level on and set for approximately -16 dBm on Range 3. Adjust AF03/1,R219, (AF03/1,R319) to set up Range change 2 to 3 using the BAR CHART.
(3) Connect the standard detector/calibrator box to Channel B (R). With the calibrator r.f. level off perform the AUTOZERO function.
(4) Select the 6500 to DATUM 0.5 dBm , RANGE $0.1 \mathrm{dBm} / \mathrm{div}$. then switch calibrator on and wait 30 seconds. Adjust R205, Channel B (R305, Channel R) to obtain 0 dBm adopting the same technique used for Channel A adjustment i.e. Select AVERAGE when within $\pm 0.03 \mathrm{dBm}$ and carry out further adjustment to achieve an optimum reading within 0.01 dBm , repeating the adjustment to achieve the best possible reading.

Temperature sensor circuit calibration (AFO3/1)
Test equipment : items 1, Resistance box connected via a 6511 probe connector to pin M. Temperature input connection and earth, pin J.
h, Digital voltmeter
74. Switch on all equipment and allow 30 minutes warm-up. Referring to Fig. 9 component layout for $\lambda F 03 / 1$, measure the Zener diode reference voltage Dl and re-select the value of resistor $R 5$ if the voltage obtained and resistor value do not coincide with the value given in Table 3.
table 3 temperature sensor calibration (R5 Selection)

Zener reference voltage (Volts)	Value of SIC resistor (R5)
$5.89-5.98$	$392 \mathrm{k} \Omega$
$5.98-6.12$	$402 \mathrm{k} \Omega$
$6.12-6.25$	$412 \mathrm{k} \Omega$
$6.25-6.39$	$422 \mathrm{k} \Omega$
$6.39-6.51$	$432 \mathrm{k} \Omega$

75. Select Channel A. Plug resistance box and probe connector into Channel A front panel input socket and carry out the following procedure:-
(1) Adjust the resistance box for a voltage of -0.6000 volts between TPL and ground (typical resistance value $43 \mathrm{k} \Omega$).
(2) Adjust $\mathrm{AF} 03 / \mathrm{l}, \mathrm{R} 6$ for an output of $+4.887 \mathrm{~V} \pm 0.003 \mathrm{~V}$ between IC6, pin 6 and ground. On completion remove resistance box and d.v.m.

FAULT LOCATION

76. The following section consists of a fault finding table and other checks to aid fault location. To assist with fault finding it is advisable to study the technical description contained in Chap. 4. The functions of the various boards are generally well defined and independent of each other. Boards/ modules are interconnected by a variety af connectors. A useful method of confirming if board or module is faulty is to substitute with a known serviceable item from a spare working instrument. This can save considerable fault finding time.
77. When disconnecting conhex connections ensure that the metal clad connector cannot accidentally cause short circuits on the printed boards and create additional faults.
78. The checks given in this chapter are not exhaustive but are intended as a pointer to further investigation. It is emphasized that each fault should be studied having regard for other fault finding information, since incorrect operation of a circuit may be caused by malfunction of an associated circuit.

Power supply faults

79. Symptoms of power supply faults are often confusing therefore it is recommended that both primary and secondary fuses be checked before commencing any other tests. Investigate the cause of any fuse found to be blown. Note that $+5 V$ and +12 V supplies do not have secondary fuses fitted. All voltages can be checked as described in the Adjustment and Calibration paragraphs.

Signal channel faults AF03/1

80. Faults involving the signal channel input board AF03/1 will normally be indicated on the display by a 'Fail' or a 'No probe' message when an attempt is made to carry out the AUTO ZERO procedure. Estabiish first by connecting
a detector probe to each input in turn, which of the three channels A, B or R is affected. Functional checks at the beginning of this chapter show the message normally expected when a detector probe is connected to each channel input in turn.
81. If one channel only is affected it is possible that the fault lies in that channel's Chopper or ist stage amplifier. If board AF03/i replacement is thought to be necessary it should be carried out with extreme care. Interconnections between each of the probes input sockets and the board are kept as short as possible to prevent noise pick-up. Fig. 10 indicates the interconnections between the probe input sockets, their pin connections and the board terminations. Also indicated are the wires that require sleeving.

Fig. 10 Probe input sockets and AF03/1 board interconnections.
82. A list of possible faults associated with the Signal input board AF03/1 follow. These are by no means exhaustive but are rather meant as a guide to assist the user to determine the likely area of the defect.
(1) Fault symptom : 'No probe' on one channel only.

Possible fault : Short circuit between Probe input socket and AF03/1 board.

Check : That all connections to the input probe socket pins are correctly terminated and sleeved as shown in Fig. 10. Ensure that connections to pins B, M and L are not shorting to a chassis pin connection.

(2)	Fault symptom	:	-Error 4^{-}, Error 46° for one channel and/or -Fail indication on all three.
	Possible fault	:	AF03/1 multiplexer IC5.
	Check	:	Carry out the checks given for fault (1) or multiplexer ICS operation.
(3)	Fault symptom	:	-No probe on all three channels.
	Possible fault	:	+15 V and +5 V supply missing on AF03/1.
	Check	:	+15 V input at PLl pin 10 and +5 V regulator output across C8.
(4)	Fault symptom	:	'Fail on all channels and excessive noise on c.r.t. display.
	Possible fault	:	AF03/1, IC2 defective, or AC09/2 Auto zero voltages missing.
	Check	:	IC2 is serviceable, renew if in saturation. Check AC12 voltages on pins A2l \& A30 vary when carrying out AUTO-ZERO routine. Using CALAID facility check that voltages are stable on any one range.
(5)	Fault symptom	:	AUTO ZERO procedure on channel " A " indicates "No probe" on channel " $B^{\prime \prime}$. Attempts to AUTO ZERO channel " B ' with a probe fitted also produce the "No probe" message.
	Possible fault	:	IC3 AND and/or IC4 NAND gates open circuit.
	Check	:	That $f . m .1$ and $f . I_{0} 2$ signals are present at AF0 $3 / 1$, PLI, pins 1 and 2 and that f.m. 2 positive-going transition leads E.m.l. by $\simeq 1$ (s. Check function of IC3, IC4.
(6)	Fault symptom	:	-Error 46° or ${ }^{\text {No }}$ Nrobe" message on all channels.
	Possible fault	:	Open circuit component in AF03/l temperature sensor.
	Check	:	Temperature sensor components for open circuit particularly RS and Dl. Voltage across Dl should be in accordance with Chap. 5, Table 3, if necessary renew Dl and reselect $R 5$. Check R6 is not intermittent.

(7) Fault symptom : Possible cause :

Check : AR07,FS4 is intact, also check that -15 V is present across AF03/1,C7.
(8) Fault symptom : Possible cause :

Check : TR1 collector (can) is at +5 V and that TRI inverter operates to switch ICl02 lst stage attenuator, use CAIAID on 'Cycle' operation.
(9) Fault symptom : Possible cause : Check : That -15 V is present on IC5 pins 4,7 and 11 and that +5 V is present on pin 16 . Check that logic inputs MO, M1 are correct for the selection of channels A, B and R, i.e.,

| M0 | M1 |
| ---: | ---: | ---: |
| $A=0$ | 0 |
| $B=1$ | 0 |
| $R=0$ | 1 |

Check the function of ICS.

CRT/ATO faults

Test equipment items:

a, Multimeter
b, c, Oscilloscope \& probe
m, Electro-static voltmeter

A WARNING LIVE PARTS

83. Before attempting to trace faults in this area it is essential that the relevant Notes and Cautions have been read at the front of this manual. Also read the WARNINGS in this chapter relating to access and correct servicing procedures when working in this area.
84. Before carrying out any electrical tests inspect all soldered connections for dry joints etc. The following list of fault symptoms and remedies give information and typical waveforms that can be monitored on board ATO1/1, AT02, and the c.r.t. These can be seen in Fig. ll. Note that all waveforms and voltages are measured with respect to IP2.

TP3		1V/div		$5 \mathrm{mS} / \mathrm{div}$			
					-		

TP17 50V/div 20uS/div

TP12 50V/div 20رS/div

TP18 2V/div 20رS/div

Fig. 11 Typical waveforms ATO1/1

	Fault symptom Possible cause		No video present, but synchronized raster. Poor connection to c.r.t. cathode.
	Check	:	Waveform at TP9 appears at c.r.t. pin 2.
(2)	Fault symptom	:	No video, unsynchronized raster.
	Possible cause	:	(i) \quad Suspect video input connections (ii) \quad No 100 V HT (iii) No output from video amplifier
	Check	:	(i) Waveform at TP8 then at TP9. (ii) Voltage at TP13 (iii) TR1,TR2,TR3 for serviceability
(3)	Fault symptom	:	Video not clamping to black level.
	Possible cause	:	(i) Input level to video amplifier could be too high (ii) Line sync. pulse width too wide (iii) TR2 bias level incorrectly set
	Check	:	(i) Waveform at TP8 (ii) Waveform at TP5 (iii) DC level (+70 V) at TP9
(4)	Fault symptom	:	No line hold.
	Possible cause	:	(i) No line sync input (ii) IC2 not operating (iii) IC3 not operating
	Check	:	(i) Waveform at TP5 (ii) Waveform at TP6 (iii) Waveform at TP7
(5)	Fault symptom	:	No frame hold.
	Possible cause	:	(i) No frame sync input (ii) Frame lock control (R48) (iii) ICl faulty
	Check	:	(i) Waveform at TP3 (ii) R48 for open or intermittent circuit (iii) ICl for serviceability

(1.0) Fault symptom : Localized non-1inearity (several lines widely Possible cause : ICl faulty

Check : ICl for serviceability.

(14) Fault symptom : Possible cause :

Check :

(15)	Fault symptom		Bent horizontals.
	Possible cause	:	(i) Power supply current limit set too low (ii) HT de-coupling (iii) Raster centring (iv) Picture shape.
	Check	:	(i) Limit to 1.5 A (ii) Cl for leakage etc. (iii) Adjustment of shift rings on L3 (iv) Adjustment of shape magnets on L3.
(16)	Fault symptom	:	Uncontrollable and excessive brightness.
	Possible cause	:	(i) Video amplifier - TR1,TR2,TR3 (ii) CRT (cathode or grid short)
	Check	:	(i) TR1,TR2,TR3 for serviceability (ii) CRT for serviceability.
(17)	Fault symptom	:	No visible raster.
	Possible cause	:	CRT voltages.
	Check	:	This fault requires a different check procedure because if the line output stage is not functioning, other d.c. voltages normally supplied to other stages of the circuit will be absent.

Procedure

(1) Check +12 V rail at TP1. If incorrect disconnect D 5 and if +12 V returns, suspect line output stage components TR6, D10, D7,C25,C26, D5. If $+12 V$ does not return suspect TR 2, TR 3 or IC1.
(2) If +12 V rail is correct check waveform at TP12:-
and/or 27 V boost at T 1 pin 10
and/or +100 V at TP13
and/or +150 V at TP11.
(3) If all voltages to step (2) are correct and TP12 waveform is also correct check the c.r.t. operating voltages at the tube base as follows:-
$h \quad$ Is heater alight? (examine in subdued lighting)
al $\quad+150 \mathrm{~V}$ at c.r.t. pin 6, if not suspect c.r.t. connection
$\mathrm{k} \quad 65-75 \mathrm{~V}$ d.c. at c.r.t. pin 2 , if not suspect c.r.t. connection.
g $\quad-50$ to +30 V at c.r.t. pin 1 as R 46 is varied, if not suspect c.r.t. connection.
11.5 to 12.5 kV on c.r.t. anode, if not suspect overwind on T1.

Note ...
Do not check by drawing off a spark from the e.h.t. connector.
(4) If c.r.t. voltages are incorrect suspect TR6,IC2,IC3,D5,C28,TR2 and TR3, then all other line output components.

CRT replacement

85. Remove both top and bottom front trim strips, hinge ATO lid and fix this into the servicing position. Remove the c.r.t. socket and base sparkguard ATO2 (there is sufficient length on the earth lead from AT02 to braid to allow removal of the c.r.t. with the braid attached) take care not to fracture the neck of the c.r.t.
86. Loosen the scan coil yoke assy. neck clamp securing the assy. to the c.r.t. and draw assy. off towards the rear.
87. Unlock the elasticated rubber fixing strap from the two upper lugs and also detach the earthing assy. from around the fixing bands. Carefully lift the c.r.t. from the gasket and dispose of it as detailed in the beginning of this chapter.
88. Take the replacement c.r.t. from its packaging, leave the pin protector and the plastic sheet on the tube face. Place the c.r.t. on its face in front of the unit with the anode on the left hand side on to a protected surface (e.g. rubber mat). Clean the anode area with a residue free cleaner (industrial methylated spirit) and also clean the anode cap on ATO2.
89. Ensure that the elasticated rubber fixing strap is attached to the lower fixing point and that the rivet coupling is centrally positioned. Carefully remove the plastic sheet from the tube face and place the c.r.t. into the gasket and re-attach the fixing strap to the two upper mounting lugs to hold the c.r.t. firmly in position. Re-attach the earthing assy. ensuring that the earthing makes good contact with the c.r.t.
90. Refit scan coil assy. c.r.t. anode cap, board ATO2.Finally remove the pin Orprotector from the c.r.t and fit the c.r.t. plug. Carry out the c.r.t align- ment in the manner described in Adjustment and Calibration paras.

Processor faults (AC18) - Self test fault displays

91. If a ROM or RAM fault is suspected, or is indicated on the display as a self test fault, note the qualifying address and identify the $I C$ concerned by reference to Chap. 7 Servicing diagram's memory map. Switch the instrument off and withdraw the board. Visually inspect this paying particular
Chap. 5
Page 34
attention to the IC whose memory address has been indicated on the display. Press suspected ICs at both ends to firmly seat them into their sockets. Remove the board and clean the edge connector with a residue free cleaner (industrial methylated spirit) then firmly replace the board ensuring the correct orientation.
92. Switch on - if the fault persists, try slightly removing the IC from the socket and pushing back in, taking care not to damage the pins - this is only likely if the IC is completely removed and re-inserted. Similarly other boards that could exhibit a memory fault are the following,

Fault conditions will be clearly displayed on the c.r.t. at power-on when the Self test operation is carried out. The operation is described in the Operating Manual Vol. 1 Chap. 3-1 "Preparation for use". Two typical faults exhibited by the 6500 are as follows :-
(1) PORT FAULT 0, 8080 (keyboard data port)

Bit 0 stuck on $8080 H$ indicates that the microprocessor cannot detect the keyboard scanning.

Possibilities :- (1) Key jammed
(2) Connection to AMOl
(3) Power supply unit AR06
(4) Encoder AFO2 (ICl)
(5) Keyboard data port AF02, IC8.
(2) PORT FAULT 0, 8803

Bit 0 stuck on 8803 H indicates that no $A D C$ end-of-conversion pulse is present.

Possibilities :- (1) No power applied to board ACll
(2) ADC START CONVERSION pulse from ACl2 missing or incorrect.
(3) CONVERT PULSE to ACll, IC3 missing
(4) $A-D$ converter IC3 on $A C l l$ suspect.

If a Memory (RAM) fault occurs during use, a message is written on the display to indicate this. The indication can be in the form of a Memory or Hardware error message or alternatively as a Memory fault with an identifying address. See also Table 4 for typical processor fault finding procedure.

TABLE 4 PROCESSOR FAULT FINDING PROCEDURE

Display faults

93. The faults described in this paragraph are those which are seen on the display but which are caused generally by faults not directly associated with actual display board ATOL/1 or ATO2.
(1) Fault symptom :
Possible cause : Microprocessor access de-glitch circuit AC02/3,
IC5 maladjusted.

Check : The adjustment of the de-glitch circuit AC02/3 R1 and R2. If the fault is still present after adjustment suspect IC5, substitute with a known serviceable item.
(2) Fault symptom :

Possible cause : Intermittent connections on AC18 edge connectors or an intermittent RAM, IC.

Check : AC18, RAMs, seating of each IC and p.c.b. connections, also clean and check edge connector pins for a good connection in the card frame. Run Diagnostic ROM - replace any faulty ICs indicated by the program. Replace ACl8 board if fault persists. When fault appears to be corrected, power up and down the instrument a number of times to ensure that the fault does not re-occur.

(5)	Fault symptom		Excessive noise floor level on display i.e. > -50 dB .
	Possible cause	:	AF03/1, buffer IC2.
	Check		By substituting IC2 with a known serviceable item.
(6)	Fault symptom	:	Line display trace which should be located off the top of the screen, is partially visible e.g. power on displays $50-60 \mathrm{~dB}$. Set DATUM to -99 dBm , display to LINE.
	Possible cause	:	Incorrect adjustment of line display clock circuit, ACOl board.
	Check	-	The alignment of the line display clock oscillator ACOl, Rll.

Chapter 5-1

detector maintenance (6511/6512)

CONTENTS

```
Para.
    Introduction
        Detector servicing
        Module replacement
        Module replacement kit
        Limited calibration
        Alternative calibration providing greater accuracy
        Cable assy, and RF connector replacement
        Detector functional checks
        Temperature sensor check
        VSWR confidence check
        Frequency response check
Spares
```

Table						Page
1	Test equipment	-••	-••	-••	-••	5
2	Temperature/mV chart	. .	-••	. .	-••	7
3	Temperature sensor figures	-••	-	- .	-••	8
Fig.						
1	6511(6512) Detector, circuit diagram	-••	-••	. . ${ }^{\text {a }}$	- .	3
2	6511 Detector, exploded view	-••	-••	4
3	PCB assy. diagram	-••	-••	-••	. .	5
4	Cable assy. wiring details	-••	-••	8
5	VSWR measurement, interconnecting dia		. .	-••	-••	9
6	Frequency response, interconnecting d	agram	-•	-••	-•	10
7	Detector unit itemized spare parts	...	-••	-••	-••	11/12

INTRODUCTION

1. This chapter contains information to assist in the repair and test procedures of Wide band detectors, if required. The procedures described in this chapter are of a simplified nature and of restricted range compared with those that relate to the more comprehensive factory test facilities which are necessary to demonstrate complete compliance with the specification.
2. The detector requires careful handing and comprehensive v.s.w.r. and power accuracy checks and because of this it is recommended that repair and re-calibration be carried out only by authorized Marconi Instruments agents or by Marconi Instruments, Microwave Products Division, Stevenage.

Detector servicing Δ (Static sensitive device - see Notes \& Cautions)

3. If specialized equipment is available to the user or it is accepted that repairs may be carried out without the detector being calibrated to its full specification the following instructions given in this chapter will enable the replacement of three sub-assemblies that may be changed without the use of special tools. A list of available spare parts is shown in Fig. 7 and access to some of these require special tooling. It is therefore recommended that dismantling beyond the sub-assembly stage is not attempted in the course of normal servicing. The three sub-assemblies available are as follows :-
(1) 6511, RF connector assy. N type, Part No. 2716-007 or 6512, RF connector assy. APC-7 type, Part No. 2718-007
(2) Cable assy. (includes 12 pin male connector) Part No. 2716-004, details are also supplied showing wiring details of both p.c.b. and plug interconnections, see Fig. 4.
\triangle (3) Detector module assy. kit
(The kit includes two pre-selected (SIC) resistors, R2 and R6).
4. Two sets of instructions are given in the following paragraphs to enable calibration to be carried out. The first gives a restricted routine using only two items of the test equipment listed in Table $1: a, 50 \mathrm{MHz}, 0 \mathrm{dBm}$ calibrator and h, a 6500 in this procedure. The power accuracy setting is however limited by the uncertainties of the 6500. A second more detailed test procedure provides for greater power accuracy. A limited v.s.w.r. check ($8.0-12.4 \mathrm{GHz}$), and a frequency response confidence check may also be carried out in addition if all the items listed in Table 1 are available.

Module replacement Δ

5. Fig 1 shows the circuit diagram of the detector module, p.c.b. and wiring details. Fig. 2 shows an exploded view of the detector to assist in the dismantling which can be carried out as follows :-
(1) Remove the two rear plate fixing screws and slide the rear plate and casing down the cable towards the plug.
(2) Progressively remove the three socket headed fixing screws securing the module retainer in position, hold the module retainer and with an axial action (i.e. a straight pull) gently detach the r.f. connector assy.
6. The module can now be removed from the retainer, this should also be withdrawn with an axial action and under no circumstances must a twisting action be exerted during withdrawal. It may be necessary to grip the end of the module with pliers or similar, using a suitable amount of padiding to ensure that the plated surface is not damaged. The module assembly contains exposed chip devices that are static sensitive, they are also connected with

Fig. 1 6511(6512) Detector circuit diagram

Fig. 26511 Detector, exploded view
a fine bond wire and therefore should not be handied directly. Instead hold the module casing across the X dimensions and withdraw the module by purchasing only from the edges.

Note ...
During withdrawal particular attention should be given to the positioning of the three contact wires so that the replacement item can be inserted into an identical position. Without care it is possible to connect the wires incorrectly.

Module replacement kit

7. Note the value of resistors included with the detector module replacement kit, if either of these differ in value to resistors $R 6$ and or $R 2$ mounted on the p.c.b. and shown in Fig. 3 they must be replaced by those supplied in the kit. Using a fine tip soldering iron remove either or both resistors, (R2) normalization, and (R6) temperature sensor compensation, with the minimum possible heat applied. Solder using flux cored $60 / 40 \%$ tin, lead solder. Remove any locking compound from the adjustment potentiometer (R1) to allow for subsequent re-calibration.
8. Gently push the replacement module into the retainer locating the three connecting wires with the correct module lead sockets of the p.c.b. as shown in Fig. 3. Being careful to retain the axial alignment insert the module into the r.f. connector assy. Replace the three module retainer screws and progressively tighten these, use Locktite 222 or similar to lock the threads of each screw.

Fig. 3 PCB assy. diagram

TABLE 1 TEST EQUIPMENT

Item	Description	Minimum use specification	Recommended model
a	50 MHz 0 dBm Calibrator	With current calibration certificate $1 \mathrm{~mW} \pm 0.7 \%$	Available on Power meters 6950 or 6960
b	Digital voltmeter	```DC volts : 0.1 V - 100 V Accuracy : 0.001%```	
c	Signal source with Sweeper mode	Freq. range : 8.0-12.4 GHz Sweep capability : $0-+10 \mathrm{~V}$ full sweep	6158A
d	Temperature sensor	$\pm 1^{0} \mathrm{C}$	Comark thermometer (6600)
e	High directivity coupler or bridge		2200/327
f	Power splitter		HP 11667A
g	Detector 6511 (6512) (General purpose)	Specification as laid down in H 6500 Vol. 1, Chap. 1. (2 off)	
h	Automatic		
	amplitude analyser	\|H 6500 Vol. 1, Chap. 1	6500
		Special tools and alignment aids	
i	Connector socket	12-way female Type 680-09-0330-00-12	MI (Microwave products)

Chap. 5-1

Test equipment : items a, h
9. Connect the 6511 (6512) Detector to the $50 \mathrm{MHz}, 0 \mathrm{dBm}$ calibrator and to Channel A of the 6500. With the r.f. source switched off carry out the AUTO ZERO function then if satisfactory switch on the r.f. source and with the 6500 temperature correction on set the 6511 adjustment potentiometer (R1) to give a reading of $0 \mathrm{dBm} \pm 0.05 \mathrm{~dB}$ on the 6500 . The adjustment should be carried out after allowing the ambient temperature to stabilize at $22^{\circ} \mathrm{C}$ or as near as possible for at least two hours. On completion lock the potentiometer with Silastic 732 silicone adhesive/sealant or similar.
10. Re-assemble the casing and backplate, sliding this over the detector and butting up to the r.f. connector assy. Locate the cable clamp in the slot on the rear support plate and slide the rear plate into position on the casing. Align rear support plate and rear plate screw holes, fit and progressively tighten the two chrome fixing screws locking these with Loctite 222 or similar.

Alternative calibration providing greater accuracy

Test equipment : items a, b, d, h, i
11. Interconnections between the d.c. output of the detector and the d.v.m. can most easily be made via a female 12 contact socket (item i). Wires should be soldered to the following pins of the socket and the free ends connected to the d.v.m. as follows :-

```
Socket pin no. DVM terminal
Pin L (signal) Positive terminal
Pin B (signal ground) Negative terminal
Pin E (chassis, earth) Remote guard cerminal
```

12. Two further compensating components are required to carry out the calibration :
(i) $1 \mu \mathrm{~F}$ tantalum bead capacitor Part No. 26486-209F.

This should be inserted into the compensation capacitor test point, the position of which is shown in Fig. 3.
(ii) $39 \mathrm{k} 2 \mathrm{2} \% 1 / 4 \mathrm{~W}$ resistor Part No. 24773-311A. This should be connected across the d.v.m. tve and -ve terminals to simulate the 6500 chopper load.
13. Also connect the r.f. input of the detector to the 50 MHz , 0 dBm calibrator in an area where temperature changes can be avoided. Monitor the temperature around the detector unit and leave for two hours for the unit to stabilize. When a stable temperature reading, within the range shown in Table 2 (ideally $22^{\circ} \mathrm{C}$) has been maintained, set adjustment potentiometer (RI) to give a d.v.m. reading corresponding to the temperature reading shown in Table 2. On completion remove the compensating capacitor and lock the potentiometer with a suitable adhesive such as silastic 732 silicone adhesive/sealant. Reassemble the casing and backplate as previously described in para. 10.

TABLE 2 TEMPERATURE/mV CHART

TEMPERATURE ${ }^{\circ} \mathrm{C}$	CALIBRATION mV
17	202.5
18	202.7
19	202.8
20	202.9
21	203.0
22	203.0
23	203.0
24	203.0
25	202.9
26	202.8
27	202.8

CABLE ASSY. AND R.F. CONNECTOR REPLACEMENT
14. To renew either an iv type (6511) or an APC-7 (6512) r.f. connector assy. simply remove the casing and the r.f. connector assy. as described in previous paragraphs. It is not advisable to further dismantle the r.f. connector, this requires special tools and the replacement of individual components is difficult.
15. The cable assy. includes the 12 pin male connector and therefore only requires connections to be made at the p.c.b. However Fig. 4 gives details of the interconnections to both p.c.b. and the 12 pin male connector should the user require to change only the plug and not the complete cable assy.

Fig. 4 Cable assy. wiring details.

Temperature sensor check
Test equipment : items d, h
16. On completion of detector calibration the item should be fully cased for all subsequent confidence checks. When handing the detector take care to touch only the cable and not the body of the item. Connect the detector to Channel A of the 6500 and carry out the AUTO ZERO function, if this is satisfactory further select SHIFT and CALAID keys to display the temperature indication. With reference to Table 3 check that the 6500 temperature sensor figure displayed is within $\pm 2^{\circ} \mathrm{C}$ of the figure monitored at the detector by the thernometer.

TABLE 3 TEMPERATURE SENSOR FIGURES

6500 dBt Temp. reading	Temperature ${ }^{\circ} \mathrm{C}$
2.2	27.9
2.3	26.9
2.4	26.0
2.5	25.1
2.6	24.2
2.7	23.3
2.8	22.5
2.9	21.7
3.0	20.9
3.1	19.1
3.2	18.6
3.3	17.8
3.4	17.1
3.5	

∇ SWR confidence check

Test equipment : items c, e, f, g, h

Fig. 5 VSWR measurement, interconnecting diagram
17. Connect the test equipment as shown in Fig. 5 and switch 6158A r.f. level off, and mode to SWEEP. Carry out the AUTO ZERO function on the 6500 , if this is satisfactory complete the following :-
(1) Set the 6158A to sweep $8.0-12.4 \mathrm{GHz}$ by entries on the 6500 Fl and F2.
(2) Switch 6158A r.f. source on and adjust the level to give an output at the bridge test port of 0 dBm .
(3) With OPEN CIRCUIT termination to the bridge select $B,-R$, STORE-B, on the 6500. Then fit SHORT CIRCUIT to the bridge and select SHIFT, STORE AV, B, on the 6500 (see Vol. 1, Chap. 3-2, Applications for further details).
(4) Connect the detector to be measured to the bridge test port and select SUB MEM,B and AUTO keys, the display now shows the return loss of the detector, pressing UNITS key will give a v.s.w.r. reading. Check that this does not exceed $1: 1.35$ across the range 8.0 12.4 MHz .

Frequency response check

Test equipment : items c, f, g, h

Fig. 6 Frequency response, interconnecting diagram
18. Connect the test equipment as shown in Fig. 6, switch 6158A r.f. source off and mode to SWEEP. Repeat the 6500 AUTO ZERO function, on completion switch 6158A r.f. source on and set the level for an output at the power splitter measurement port of -10 dBm , then carry out the following steps :-
(1) Store trace in memory using a known serviceable detector in Channel A.
(2) Replace Channel A detector by the repaired item and subtract new display from Channel A memory.
(3) Check that any variations in the resultant display do not exceed 1 dB .

SPARES

19. The number of spare items available for maintenance purposes are of necessity limited due to the minute size of some individual items and the difficulties involved in renewal of these. The following list of available spares therefore is not inclusive.

Unit 6511/6512 Detector (wide band)
Complete item 6511 2716

Complete item 6512
RF connector assy. N type (6511)
RF connector assy. APC-7 type (6512)
Body moulding assy.
Spring
Plunger
Centre contact assy.
N type plug with 7 mm airline (6511)
APC-7 type plug with 7 mm airline 6512)
Sleeve
Screw Zinc plate, Skt. Hd. M2 x 5 mm
Retainer (Module)
Detector module assy. kit (includes R2,R6)
Casing
Screw, Zinc plate, Pan Hd. M2 x 10 mm
Spacer (short)
Spacer (long)
Printed circuit board assy. (includes Cable assy.)
PCB detail
Single contact connector socket
Resistor variable (R1) $10 \mathrm{~K} 0.5 \mathrm{~W} \pm 20 \%$
Plate (retaining cable)
Plate (
Screw, Zinc plate, Pan Hd. M2 x 8 mm
Screw, Chrone plate, Pan Hd. M2 x 12 mm
Cable assy. (Part of Printed circuit board assy.)
7 core double braid cable (2 M)
Rear plate
12 pin male connector
'0' clip W. 107 1/4'

* Recommended
replaceable spare assys.

GRIFLEX
2716
2718
2716-007 *
2718-007 *
2718-007
$2716-001$
$2717-019$
$2717-019$
$2717-017$
$2717-017$
$2716-003$
$2716-003$
$131-10003$
$131-10003$
$131-1050$
$131-1050$
$2716-012$
$2716-0$
GKN
2716-014
2716-014 *
2716-006
$2716-021$
$21837-241 \mathrm{E}$
21837-241E
2716-018
2716-017
2716-002
28488-004E
URNS $3329 \mathrm{~W}-1-103$
BOURNS $3329 \mathrm{~W}-1-10$
or SPECTRO RELIANC
2716-019
1837-239V
21838-243T
2716-004 *
$2716-500$
$2716-020$

Fig. 7
Chap. 5-1

Chapter 5-2

DETECTOR MAINTENANCE (6514)

CONTENTS

```
Para.
Introduction
Operation
Maintenance
Performance tests
    Initial setting up procedure
    Power accuracy
    VSWR confidence check
Table 
Eig.
    l Power accuracy measurement, interconnecting diagram . ... ... 3
    2 VSWR measurement, interconnecting diagram ... ... ... ... 4
```


INTRODUCTION

1. The RF Detector 6514 is designed for use with 6500 Automatic Amplitude Analyser. The performance of waveguide assemblies may be characterized for transmission loss or gain, power, return loss or VSWR from 26.5 to 40 GHz over a 61 dB range.

OPERATION

2. Each RF Detector comes complete with waveguide attachment for user convenience and to avoid the possibility of damage to detector input face and screw threads through repeated attaching and detaching.
3. The 6514 detected signal is processed by the 6500 to produce a power reading. Powers outside of the square law of the diode are corrected by means of a look-up table in the 6500. The detector type function, DET, is used to select the correction for 6514. (Earlier instruments not having this key fitted can be retrospectively modified if this is required). Details for selecting the 6514 detector, zeroing, and setting of frequency limits are all described in the Vol. 1 Operating Manual.

MAINTENANCE

4. User servicing is not recommended for this detector and no itemized spares are available. If servicing is required the device should be returned to Marconi Instruments Microwave Products, Stevenage with details of any faults encountered.

PERFORMANCE TESTS

5. The following procedure will allow the user to verify the performance of the detector. This procedure is of a simplified nature however and of restricted range compared with tests that relate to the more comprehensive factory test facilities which are necessary to demonstrate complete compliance with the specification.

TABLE 1 TEST EQUIPMENT

Item	Description	Minimum use specification	Recommended model
a	Automatic amplitude analyser	See H6500 Vol. 1 Chap. 1	6500
b	Detector 6514	See H6500 Vol. 1 Chap. 1	6514
c	High directivity couplers	$\begin{gathered} \text { Directivity: }>35 \mathrm{~dB} \\ 26.5-40 \mathrm{GHz} \end{gathered}$	$\begin{aligned} \text { HP } & \text { R752C } \\ 2 & \text { off } \end{aligned}$
d	Variable attenuator	26.5-40 GHz	6052/1
e	Signal source	$\begin{array}{lc}\text { Frequency: } & 26.5-40 \mathrm{GHz} \\ \text { Output: } & 0 \mathrm{dBm}\end{array}$	6600A/1
\pm	Power head/meter	```Calibrated at 0 dBm at 33 GHz```	6460 \& 6428
g	Waveguide short circuit	$26.5-40 \mathrm{GHz}$	Mid-century Microwave MC 22/12
h	Ferrite isolator	$26.5-40 \mathrm{GHz}$ isolation $>20 \mathrm{dBs}$ VSWR <1.2:1	Trak Microwave Corp. 2571-1810

Initial setting up procedure

6. With the three channels of the 6500 Automatic Amplitude Analyser free of detectors, connect the 6514 under test to channel A. With the RF source switched off carry out the AUTO ZERO function pressing SHIFT and ZERO keys. A status message displayed on the screen should then read
"Ready" for channel A
and "No probe" for channels B and R
No error message should be present.
7. If an error message is present, repeat the test with the 6514 connected in turn to channels B and R to ensure that the fault is confined to the detector under test. The Auto Zero status message displayed should indicate the same fault regardless of channel.

Power accuracy (to be measured at $22^{\circ} \pm 2^{\circ} \mathrm{C}$)
Test equipment: items a, b, c, d, e, f
8. Connect an $R F$ source capable of producing a levelled output of 0 dBm at 33 GHz , via a variable attenuator, to a high directivity directional coupler as shown in Eig. l below. A $6514 / 6500$ or another power head/meter combination can be used as the monitor on the side arm of the directional coupler.

Fig. 1 Power accuracy measurement, interconnecting didgram
9. Connect the 6514 under test to channel A of the 6500 and enter the detector type information by pressing SHIFT, DET, 4 and ENTER keys. Attach the power head to the directional coupler and carry out the following steps:-
(1) With no r.f. power supplied; zero the 6514 under test and also the monitor and power head.
(2) Then with r.f. supplied at 33 GHz adjust the variable attenuator until the power meter reads 0 dBm and note the power reading on the monitor.
(3) Taking care not to handle the detector case, replace the power head with 6514 under test.
(4) Adjust the variable attenuator until the monitor power reading returns to the previous value. Allow the detector to stabilize to ambient temperature ensuring it is not in the air flow of an instrument cooling system or other thermally unstable environment. The 6500 should give a reading of $0.0 \pm 0.4 \mathrm{dBm}$.

VSWR confidence check

Test equipment: items a, b, c, e, g, h
10. A v.s.w.r. reading of the 6514 can be obtained by reference to Chap. 3-2, paras. 16 and 17 of the Operating Manual Vol. 1. Connections should be made as shown in Fig. 2 below, and not as illustrated in Vol. 1 Chap. 3-2, Fig. 8. There, detector A is connected so that a transmission loss measurement can also be carried out. VSWR should be better than 2.5:1.

Fig. 2 VSWR measurement, interconnecting diagram

Chapter 6

REPLACEABLE PARTS

CONTENTS

```
Para.
    1 Introduction
    Abbreviations
    Component values
    Ordering
    Electrical components
        Unit GA - General assembly
        Unit ACOI - Timing circuit
        Unit ACO2/ACO3 - Line generators A/B
        Unit AC04/1 - Video circuit (graticule)
    Unit AC05 - Alpha generator
    Unit ACl8 - Microprocessor
    Unit ACO9/2 - In-Out (Port control)
    Unit ACll - A-D system and log conversion
    Unit ACl2 - Signal channel
    Unit AFO1 - Keyboard
    Unit AFO2 - Keyboard decoder
    Unit AF03/1 - Signal input board
    Unit AFO4 - Intensity control
    Unit AMO1 - Part of General Assemoly
    Unit ARO1 - \pm15V Regulator
    Unit ARO2 - +15V Regulator
    Unit ARO3 - +12V Regulator
    Unit ARO4/l - Ramp circuit
    Unit ARO5 - +24V Regulator
    Unit AR06 - Power supply chassis assy.
    Unit ARO7 - Part of Power supply chassis
    Unit AR09 - Heat sink assy. l
    Unit ARIO - Heat sink assy. 2
    Unit ATOl/1 - Part of CRT
    Unit ATO2 - Part of CRT
    Unit GPIB - Interface module (Optional accessory)
        Mechanical components
```

Fig. Miscellaneous mechanical components
1 Page
$37 / 38$

INTRODUCTION

1. Each sub-assembly or printed circuit board in this equipment has been allocated a reference designator code, e.g. ACOl, ACO2, ACll etc.
2. The complete component reference includes its reference designator as a prefix e.g. ACOI Cl (capacitor Cl on printed circuit board ACOl) but for convenience in the text and diagrams the prefix is omitted unless it is needed to avoid confusion. However, when ordering replacements or in correspondence the complete component reference must be quoted.

ABBREVIATIONS

3. Electrical components are listed in alpha-numerical order of their complete circuit reference and the following standard abbreviations are used:

ADC	analogue-digital converter
$A X$	axial
CAP	capacitor
CARR	carrier
CARB	carbon
CC	carbon composition
CDE CNV	code converter
CER	ceramic
CERM	cermet
CF	carbon film
COAX	coaxial
CON	connector
CTR	counter
DAC	digital-analogue converter
DEC/DMX	decoder/demultiplexer
DECOD	decoder
DIL	dual in-line
DIV	divider
DRIV	driver
ELEC	electrolytic
ENCOD	encoder
$\overline{E E M}$	female
FF	flip-flop (bistable)
FILTERCON	filtering capacitor
GER	germanium
GP	general purpose
ICA	integrated circuit, analogue
ICD	integrated circuit, digital
IND	inductor
INV	inverter
LD/T	lead through
MF	metal film
MG	metal glaze
MISC	miscellaneous
MO	metal oxide
MP	microprocessor
MP SUPP	microprocessor support
MUX	multiplexer
NET	network
PC	polycarbonate
PETP	(polyester) polyethelene terephthalate
PS	polystyrene
PLL	phase-locked loop

Q/ACT	quick acting
RECT	rectifier
RES	resistor
RV	resistor, variable
RX	receiver
SAPPH	sapphire
SEC	secondary
SCHM	Schmitt
SH REG	shift register
SIL	silicon
SW	switch
T/LAG	time lag
TANT	tantalum
TOG	toggle
TRANS	transistor
IX	transmitter
VAR	variable
VREG	voltage regulator
W	watts at $70^{\circ} \mathrm{C}$
WW	wirewound
X	miscellaneous item
XL	crystal
$!$	static sensitive component
\% +	asymmetric tolerance
\#	programmed EPROM

COMPONENT VALUES

4. One or more of the components fitted in the equipment may differ from those listed in this chapter for any of the following reasons:
(a) Components indicated by an $*$ have their values selected during test to achieve particular performance limits.
(b) Owing to supply difficulties, components of different value or type may be substituted provided the overall performance of the equipment is maintained.
(c) As part of a policy of continuous development, components may be changed in value or type to obtain detail improvements in performance.
5. When there is a difference between the component fitted and the one listed, always use as a replacement the same type and value as found in the equipment. While equivalent alternatives to some components may be included during manufacture, Marconi Instruments Ltd., Microwave Products Division, should be consulted before any other alternatives are fitted when the equipment is being serviced.

ORDERING

6. When ordering replacements, address the order to our Technical Services Department (address on rear cover) or nearest agent and specify the following for each component required:-
(1) Type:非 and serial number of equipment
(2) Complete circuit reference
(3) Description
(4) Part number
\# As given on the serial number label at the rear of the equipment; if this is superseded by a model number label, quote the model number instead of the type number. Or contact your local Marconi Instruments, Microwave Products Division representative.
\neq To order a replacement programmed EPROM, specify the serial number of the instrument, and the part number of the IC required. Also specify the EPROM version number, this is identified on the $I C$ following the part number e.g. ACO1, IC6, 3964-700 Iss. 1 , or 3964-700 Iss. 2.

ELECTRICAL COMPONENTS

Unit GA - General assembly
7. When ordering, prefix circuit reference with GA

CRT NEC
MAGNET TBX15 3 MM CRT CORRECTOR
YOKE \& CABLE ASSY
GASKET
SUPPORT ASSY
STRAP ASSY
CABLE ASSY (AF03/1-AC12)
CABLE ASSY (AC09/2-AR04/1)
CABLE ASSY (ARO6-AMO1)
CABLE ASSY (AMO1-AFO4-ATO1)
CABLE ASSY (AFO2-AMO1)
CABLE ASSY (MOTOR \& CABLE)
CABLE ASSY (AF03/1-AMO1)
FAN INST $115 \mathrm{~V} 50 / 60 \mathrm{~Hz} \quad 1 \mathrm{PH} 80 \mathrm{~mm}$ MOTOR 12 V DC
I/O PANEL ASSY
AR04/1 PCB ASSY
I/O PANEL DET. ASSY
COAXIAL CABLE ASSY
GROMMET BLIND 9.52 PVC CONN RF BNC SKI FIXED (INS)

190 FB31 E7-91
28238-157M
3964-046
37590-742K
3964-122
41700-381T
3964-040
3964-279
3964-042
3964-043
3964-044
3964-045
3964-047
PAPST MOTORS (8500 N)
23535-401M
3964-278
3964-127
3964-274
3964-280/A,B
23188-251M
23443-449Y

Unit ACO1 - Timing circuit -
8. When ordering, prefix circuit reference with ACOl

Complete unit
C1 . CAP CER .001UF 63V 10\%
C2 CAP CER .O1UF 25V 20\%
C3 CAP CER 220PF 63V 10\%
C4 CAP CER .01UF 25V 20\%
C5 CAP CER .O1UF 25V 20\%
$\begin{array}{lllll}\text { C6 } & \text { CAP CER .O1UF } 25 \mathrm{~V} & 20 \% \\ \text { C7 } & \text { CAP CER .OLUF } 25 \mathrm{~V} & 20 \%\end{array}$
C8 CAP CER .O1UF 25V 20\%
C9 CAP CER .OLUF 25V 20\%
C11 CAP TANT 47UF 6V 20\%
C12 CAP CER 220PF 100V 10\%
C13 CAP TANT 10UF 35V 20\%
C14 CAP CER .OIUF 25V 20\%
Cl5 CAP TANT 1.OUF 35V 20\%

3964-081
26383-585M
26383-006C
26383-587R
26383-006C
26383-006C
26383-006C
26383-006C
26383-006C
26383-006C

26486-232
MULLARD CN15A 221K
26486-225C
26383-006C
26486-209F

28336-676Ji
Chap. 6
Page 5

Circuit
Mfr./Part Number
reference

ICI	ICD SCHM 74LS132	28469-205N
IC2	ICD DIV 74LS90	28464-014S
IC3	ICD FF D 74LS74 DUAL+EDG TR	28462-611A
IC4	ICD DIV 74LS93	28464-117W
IC5	ICD DIV 74LS93	28464-117W
\# IC6	ICD B2716 (LINE TIMING CONTROL PROM) !	3964-700
IC7	ICD FF D 74LS273 OCT+EDG TR	28462-615U
IC8	ICD CTR 4040	28464-108L
* IC9	ICD B2716 (FRAME TIMING CONTROL PROM)!	3964-701
IC10	ICD FFD 74LS273 OCT+EDG TR	28462-6́15U
IC11	ICD MONO 4528	28468-308R
IC13	ICD NAND 74LSOO QUAD 2 1NP	28466-345H
IC16	ICD NAND 74LSOO QUAD 2 1NP	28466-345H
IC17	ICD INV 74LS04	28469-171L
IC18	ICA VREG+MC78L05CP 5V OAI	MOTOROLA UA78/ TEXASLOSCLP
R1	RES MF 4K7 1/4W 2\%	24773-289W
R2	RES MF 2K7 1/4W 2%	24773-283L
R3	RES MF 1K0 1/4W 2%	24773-273A
R4	RES ME LKO 1/4 2\%	24773-273A
R5	RES MF IKO 1/4W 2\%	24773-273A
R6	RV CERM 50K LIN .3W 10\% FLAT	25748-509C
R7	RES MF 10K 1/4W 2\%	24773-297M
R8	RV CERM 50K LIN .3W 10\% FLAT	25748-509C
R9	RES MF 47K 1/4W 2\%	24773-313H
R10	RES MF 220R 1/4W 2%	24773-257W
R11	RV CERM 200R LIN . 3 W 10\% FLAT	25748-502S
SKT	LOW PROFILE DIL 24	28488-044N
Sl SW	DIL 35W	23465-894E

Unit AC02/AC03 - Line generators A/B -
9. When ordering, prefix circuit reference with ACO2 or ACO3

C1	CAP CER .OO1UF 63V 10%	$26383-585 \mathrm{M}$
C2	CAP CER .OO1UF 63V 10%	$26383-585 \mathrm{M}$
C3	CAP TANT 10UF 35V 20\%	$26486-225 \mathrm{C}$
C4	CAP CER 100PF 63V 2\%	$26343-477 \mathrm{~V}$
C5	CAP CER 100PF 63V 2\%	$26343-477 \mathrm{~V}$

Chap. 6
Page 6

Circuit
Description
Mfr./Part Number
reference

Unit $\mathrm{ACO} / \mathrm{ACO} 3$ - Line generators A / B - (continued)

| C6 | CAP CER 22PF 63V 5\% | $26343-469 \mathrm{~N}$ |
| :--- | :--- | :--- | :--- |
| C8 | CAP TANT 47UF 6V 20\% | $26486-232 \mathrm{~A}$ |
| C9 | CAP CER .OIUF 25V 20\% | $26383-006 \mathrm{C}$ |
| C10 | CAP CER .OIUF 25V 20\% | $26383-006 \mathrm{C}$ |
| C11 | CAP CER .O1UF 25V 20\% | $26383-006 \mathrm{C}$ |

| C13 | CAP CER .O1UF 25V 20\% | $26383-006 \mathrm{C}$ | |
| :--- | :--- | :--- | :--- | :--- |
| C14 | CAP CER .OIUF 25V 20\% | $26383-006 \mathrm{C}$ | |
| C15 | CAP CER .O1UF 25V 20\% | $26383-006 \mathrm{C}$ | |
| C16 | CAP CER .OIUF 25V 20\% | $26383-006 \mathrm{C}$ | |
| C17 | CAP CER .OIUF 25V 20\% | $26383-006 \mathrm{C}$ | |
| | | | |
| C18 | | | $26383-006 \mathrm{C}$ |

| D1 | DIODE SIL $1 N 4148100 \mathrm{~V}$ | $28336-676 \mathrm{~J}$ |
| :--- | :--- | :--- | :--- |
| D2 | DIODE SIL $1 N 4148 \mathrm{LO}$ | $28336-676 \mathrm{~J}$ |

| IC1 | ICD NAND 74LSOU QUAD 2 INP | $28466-345 H$ |
| :--- | :--- | :--- | :--- |
| IC2 | ICD DEC/MUX 74LS 138 3-8 | $28465-027 \mathrm{~F}$ |
| IC3 | ICD MUX 74LS 157 QUAD 2 LNP | $28469-707 \mathrm{~B}$ |
| IC4 | ICD BUFE 74LS245 OCT TX RX | $28469-188 B$ |
| IC5 | ICD MONO 74LS 123 DUAL RETR | $28468-309 B$ |

IC6	ICD	MUX	74LS 157	QUAD 2	1 NP			28469-707B
IC7	ICD	MUX	74LS 157	QUAD 2	1NP			28469-707B
IC8	ICD	DIV	404012	STAGE				28464-108L
IC9	ICD	RaM	$2114 \mathrm{AL}-4$	1Kx4	BIT	200NS		28469-306Y
IC10	ICD	RAM	2114AL-4	1Kx4	BIT	200NS	$!$	28469-306Y

Circuit
reference

Description
Mfr./Part Number
reference

Unit ACO2/ACO3 - Line generators A / B - (continued)

IC18	ICD FFD 74LS74 DUAL+EDG TR	28462-б́11A
IC19	ICD EFD 74LS74 DUAL+EDG TR	28462-611A
IC20	ICD OR 74LS 32 QUAD 2 LNP	28466-108U
IC21	ICD MONO 74LSI23 DUAL RETR	28468-309B
IC22	ICD NAND 74LSOO QUAD 2 LNP	28466-345H
IC23	ICD OR 74LS32 QUAD 2 INP	28466-108U
R1	RES RV CERM 10K LIN . 3 W 10\% FLAT	25748-507X
R2	RES MF 5K6 1/4W 2\%	24773-291S
R3	RES RV CERM 10K LIN . 3 W 10\% FLAT	25748-507X
R4	RES MF 5K6 1/4W 2%	24773-291S
R5	RES MF 4K7 1/4W 2\%	24773-289W

| R6 | RES MF $4 \mathrm{~K} 71 / 4 \mathrm{~W} 2 \%$ | $24773-289 \mathrm{~W}$ |
| :--- | :--- | :--- | :--- | :--- |
| R7 | RES MF $1 \mathrm{KO} 1 / 4 \mathrm{~W} 2 \%$ | $24773-273 \mathrm{~A}$ |
| R8 | RES MF $1 \mathrm{KO} 1 / 4 \mathrm{~W} 2 \%$ | $24773-273 \mathrm{~A}$ |
| R9 | RES MF $15 \mathrm{~K} 1 / 4 \mathrm{~W} 2 \%$ | $24773-301 \mathrm{P}$ |

Unit AC04/1 - Video circuit (graticule)
10. When ordering, prefix circuit reference with $A C 04 / 1$

Complete unit				
C1	CAP CER .OIUF	$25 V$	20%	
C2	CAP CER .O1UF 25 V	20%		
C3	CAP CER .O1UF 25 V	20%		
C4	CAP CER .O1UF	25 V	20%	
C5	CAP CER .OIUF	25 V	20%	

3964-139
26383-006C
26383-006C
26383-006C
26383-006C
26383-006C

26383-006C
26383-006C
26383-006C
26383-006C
26383-006C

26383-006C
26383-006C
26383-006C
26383-006C
26383-006C

| IC6 | ICD MUX 74LS 157 QUAD 2 INP | $28469-707 \mathrm{~B}$ |
| :--- | :--- | :--- | :--- |
| IC7 | ICD BUFF 74LS 244 OCT 3 ST | $28469-182 \mathrm{~T}$ |
| IC8 | ICD RAM 2114 AL-4 1KX4BIT 200NS $!$ | $28469-306 \mathrm{Y}$ |
| IC9 | ICD MONO 74LS 123 DUAL RETR | $28468-309 B$ |
| IC10 | ICD MUX 74LS 57 QUAD 2 INP | $28469-707 B$ |

IC11	ICD NAND	74LS00 QUAD 2 lNP	28466-345H
IC12	ICD FF D	74 LS 273 OCT+EDG TR	28462-615U
IC13	ICD NAND	74LSOO QUAD 2 LNP	28466-345H
IC14	ICD NAND	74LS 10 TRIP 3 LNP	28466-351Y
IC15	ICD NAND	74 LSOO QUAD 2 lNP	28466-345H

Circuit
Description
Mfr./Part number
reference

Unit ACO5 - Alpha generator -
11. When ordering, prefix circuit reference with ACO5

Complete unit	$3964-085$
CAP PS 100P 350V 2PF AX	$26516-243 \mathrm{~J}$
CAP PS 100P 350V 2PF AX	$26516-243 \mathrm{~J}$
CAP TANT 47UF 6V 20\%	$26486-232 \mathrm{~A}$
CAP CER . O1UF 25V 20\%	$26383-006 \mathrm{C}$

| C6 | CAP CER .O1UF 25V 20\% | $26383-006 \mathrm{C}$ |
| :--- | :--- | :--- | :--- | :--- |
| C7 | CAP CER .O1UF 25V 20\% | $26383-006 \mathrm{C}$ |
| C8 | CAP CER .O1UF 25V 20\% | $26383-006 \mathrm{C}$ |
| C9 | CAP CER .O1UF 25V 20\% | $26383-006 \mathrm{C}$ |
| C10 | CAP CER .O1UF 25V 20\% | $26383-006 \mathrm{C}$ |

| C11 | CAP CER .OIUF 25V 20\% | $26383-006 \mathrm{C}$ |
| :--- | :--- | :--- | :--- | :--- |
| C12 | CAP CER .OIUF 25V 20\% | $26383-006 \mathrm{C}$ |
| CI3 | CAP CER .OIUF 25V 20\% | $26383-006 \mathrm{C}$ |
| CI4 | CAP CER .OIUF 25V 20\% | $26383-006 \mathrm{C}$ |
| C15 | CAP CER .O1UF 25V 20\% | $26383-006 \mathrm{C}$ |

```
    Circuit Description
reference
```

Unit ACO5 - Alpha generator - (continued)

| C16 | CAP CER .O1UF 25V 20\% | $26383-006 \mathrm{C}$ |
| :--- | :--- | :--- | :--- |
| C17 | CAP CER .OIUF 25V 20\% | $26383-006 \mathrm{C}$ |
| C18 | CAP CER .OLUF 25V 20\% | $26383-006 \mathrm{C}$ |
| | | |
| IC1 | ICD DEC/DMX 74LS 138 3-8 | $28465-027 \mathrm{~F}$ |
| IC2 | ICD FF JK 4027 DUAL B1 ! | $28462-018 \mathrm{C}$ |
| IC3 | ICD FF JK 4027 DUAL B1 ! | $28462-018 \mathrm{C}$ |
| IC4 | ICD BUFF 74LS244 OCT 3 STATE | $28469-182 \mathrm{~T}$ |
| IC5 | ICD NOR 74LSO2 QUAD 2 1NP | $28466-214 \mathrm{Y}$ |

IC6 ICD RAM 2114 AL-4 1Kx4BIT 200NS ! 28469-306Y
IC7 ICD RAM 2114 AL-4 1Kx4BIT 200NS ! 28469-306Y
IC8 ICD MUX 74LS157 QUAD 2 1NP 28469-707B
IC9 ICD MUX 74LS157 QUAD 2 1NP
ICl0 ICD MUX 74LS157 QUAD 2 INP 28469-707B

IC11	ICD CTR 74 LS 197	4BIT	BIN	PRE	$28464-116 S$
IC12	ICD CTR	74LS197	4BIT	BIN	PRE

IC16 ICD LATCH 74LS75 QUAD 28462-408U
\# IC17
IC18
ICD B2716 (ALPHANUMERIC CHAR.GEN.PROM) !
ICD SH REG 74LS165 8BIT PISO
IC20 ICD MONO 74LS 123 DUAL RETR
3964-702
IC21 ICD NAND 74LS00 QUAD 2 INP
SN 74LSI65N
28468-309B
28466-345H
IC22 ICD FF D 74LS74 DUAL+EDG TR 28462-611A
IC23 ICD DIV 404012 STAGE ! 28464-108L
RI RES MF 100K 1/4W 2\% 24773-321L
R2 RES MF 1OK 1/4W 2\% 24773-297M
R3
RES MF 3K9 1/4W 2\%
24773-287V
SKT LOW PROFILE DIL 24 28488-044N

Unit ACl8 - Microprocessor -
12. When ordering, prefix circuit reference with ACl8

	Complete unit				3964-079
Cl	CAP	Tant 4	47UF 6	6V 20\%	26486-232A
C2	CAP	TANT 1	luF 35	35V 20\%	26486-209F
C3	CAP	CER . 1	1 UF 50	50V 20\%	26383-534Y
C4	CAP	CER . 1	luF 50	50V 20\%	26383-534Y
C5	CAP	CER . 1	luf 50	50V 20\%	26383-534Y
C6	CAP	CER . 1	1UF 50	50v 20\%	26383-534Y
C7	CAP	CER . 1	1 UF 50	50v 20\%	26383-534Y
C8	CAP	TANT 1	IUF 35	35V 20\%	26486-209F
C9	CAP	TANT 1	1UF 35	35V 20\%	26486-209F
C10	CAP	CER . 1	luF 50	50V 20\%	26383-534Y
Cl1	CAP	tant 1	luF 35	35V 20\%	26486-209F
C12	CAP	tant 1	IUF 35	35v 20\%	26486-209F
Cl3	CAP	CER . 1	1 UF 50	50V 20\%	26383-534Y
C14	CAP	CER . 1	1UF 50	50v 20\%	26383-534Y
C15	CAP	CER . 1	IUF 50	50V 20\%	26383-534Y
C16	CAP	CER . 1	lue 50v	50V 20\%	26383-534Y
C17	CAP	CER . 1	lUF 50	50v 20\%	26383-534Y

C18	CAP CER .lUF 50V 20\%	26383-534Y
C19	CAP CER .lUF 50V 20\%	26383-534Y
C20	CAP CER . 1 UF 50V 20\%	26383-534Y
C21	CAP CER . 1 UF 50V 20\%	26383-534Y
C22	CAP TANT 47UF 6V 20\%	26486-232A
C23	CAP TANT 1UF 35V 20\%	26486-209F
CON.	JUMP FEM 21 ROW (LINKS $1,2,3 \& 4$)	23435-990x
D1	DIODE SIL 4148 100V	28336-676J
ICl	ICD MP 8085A-2 8 BIT NMOS !	28469-415F
IC2	ICD INV 74LSO4 HEX	28469-171L
IC3	ICD DEC/DMX 74LSI39 DUAL 2-4	28469-029V
IC4	ICD NAND 74LSOO QUAD 2 INP	28466-345H
IC5	ICD DEC/DMX 74LSI38.3-8	28465-027F
IC6	ICD DEC/DMX 74LSI38 3-8	28465-027F
\#1C7	ICD 2764 (CONTROL PROM PT.1)	3964-715
\#1C8	ICD 2764 (CONTROL PROM PT.2) !	3964-716
tic9	ICD 2764 (CONTROL PROM PT.3) !	3964-717
\#ICl0	ICD 2764 (CONTROL PROM PT.4) !	3964-718

```
Unit AC18 - Microprocessor (continued)
```

IC11	ICD BUFF 74LS245 OCT TX RX	28469-188B
IC12	ICD EF D 74LS74 DUAL+EDG TR	28462-611A
IC13	ICD FF D 74LS74 DUAL+EDG TR	28462-611A
IC14	ICD BUFF 74LS244 OCT 3 ST	28469-182T
IC15	ICD LATCH 74LS373 OCT 3 ST	28462-410E
IC16	ICD BUFF 74LS244 OCT 3 ST	28469-182T
IC17	ICD RAM HM6116P-4 2Kx8 BIT 200NS !	28469-307N
IC1 8	ICD RAM HM6116P-4 2Kx8 BIT 200NS !	28469-307N
IC19	ICD RAM HM6116P-4 2Kx8 BIT 200NS !	28469-307N
IC20	ICD RAM HM6116P-4 2Kx8 BIT 200NS !	28469-307N
IC2 1	ICD AND 74LS08 QUAD 2 INP	28466-012L
R1	RES MF $10 \mathrm{~K} 1 / 4 \mathrm{~W} 2 \%$	24773-297M
R2	RES MF 10K 1/4W 2\%	24773-297M
R3	RES MF lok l/ $4 \mathrm{~W} 2 \%$	24773-297M
R4	RES MF 10K 1/4W 2\%	24773-297M
R5	RES MF $1 \mathrm{~K} 1 / 4 \mathrm{~W} 2 \%$	24773-273A
R6	RES MF 150R 1/4W 2\%	24773-253F
R7	RES MF 1K 1/4W 2%	24773-273A
R9	RES MF LK 1/4W 2\%	24773-273A
SKT	LOW PROFILE DIL 28	28488-045L
XLI	10 MHz CRYSTAL	28312-047U

Unit AC09/2 - In-Out (Port control)
13. When ordering, prefix circuit reference with ACO9/2

Complete unit
Cl
C2
C3
C4
C5
C6
C7
C8
C9
Clo
Cll
Cl2 CAP PETP . 22UF $100 \mathrm{~V} 10 \%$
C13 CAP TANT . 47UF 35V 20\%
C14 CAP CER .IUF 50V 20\%
C15 CAP CER . IUF 50V 20\%

3964-135
26383-534Y
26383-534Y
26383-534Y
26343-483D0x
26486-225C

25486-232A
26486-225C
26383-534Y
26383-534Y
26383-534Y
26383-534Y
26582-226G
26486-207L
26383-534Y
26383-534Y

Circuit
Description
Mfr./Part Number
reference

Unit AC09/2 - In-Out (Port control) - (continued)		
Cl 6	CAP PETP . 22 UF 100V 10\%	26582-226G
C17	CAP TANT . 47 UF 35V 20\%	26486-207L
C18	CAP CER . OlUF 25V 20\%	26383-006C
C19	CAP TANT LUF 35V 20\%	26486-209F
C20	CAP CER . OlUF 25V 20\%	26383-006C
C21	CAP TANT LUF 35V 20\%	26486-209F
C22	CAP TANT LUF 35V 20\%	26486-209F
C23	CAP CER .OLUF 25V 20\%	26383-006C
C24	CAP TANT 1UF 35V 20\%	26486-209E
C25	CAP CER . 01 UF 25V 20\%	26383-006C
C26	CAP TANT 4.7UF 35V 20\%	26486-219P
C27	CAP CER . OLUF 25V 20\%	26383-006C
C28	CAP TANT LUF 35V 20\%	26486-209F
C29	CAP CER . 1 UF 50V 20\%	26383-534Y
C30	CAP CER 100PF 63V 2\%	26343-477V
C31	CAP CER . 01 UF 25V 20\%	26383-006C
C32	CAP TANT 1UF 35V 20\%	26486-209F
C33	CAP TANT LUF 35V 20\%	26486-209F
C34	CAP CER . 01 UF 25V 20\%	26383-006C
C35	CAP CER . 1 UF 50V 20\%	26383-534Y
C36	CAP CER . OlUF 25V 20\%	26383-006C
C37	CAP TANT LUF 35V 20\%	26486-209F
C38	CAP CER 100PF 63V 2\%	26343-477V
C39	CAP TANT lUF 35V 20\%	26486-209F
C40	CAP CER . 01 UF 25V 20\%	26383-006C
C41	CAP CER . 01 UF 25V 20\%	26383-006C
C42.	CAP TANT LUF 35V 20\%	26486-209F
C43	CAP TANT LUF 35V 20\%	26486-209F
C44	CAP CER .O1UF 25V 20\%	26383-006C
C45	CAP CER .OLUF 25V 20\%	26383-006C
C46	CAP TANT LUF 35V 20\%	26486-209F
C47	CAP CER . O1UF 25V 20\%	26383-006C
C48	CAP CER .001UF 63V 10\%	26383-242P
C49	CAP CER .001UF 63V 10\%	26383-242P
C50	CAP CER . 014 F 25V 20\%	26383-006C
C5 1	CAP TANT 1UF 35V 20\%	26486-209F
D1	DIODE SIL 1N4148 100V	28336-676J
D4	DIODE ZENER 1N829 6.2 V 5\%	28371-530K
D5	DIODE SIL 1N4148 100V	28336-676J

Unit AC09/2 - In-Out (Port control) - (continued)

IC1	ICD BUFF 74LS125A QUAD 3ST	$28469-184 \mathrm{X}$
IC2	ICD DEC/MUX 74LS138 3-8	$28465-027 \mathrm{~F}$
IC3	ICD NAND 74LS00 QUAD 2 1NP	$28466-345 \mathrm{H}$
IC4	ICD NAND 74LSO0 QUAD 2 1NP	$28466-345 \mathrm{H}$
IC5	ICD FF D 74LS273 OCT+EDG TR	$28462-615 \mathrm{U}$
IC6	ICD FF D 74LS273 OCT+EDG TR	$28462-615 \mathrm{U}$
IC7	ICA ADC ZN425E 8-BIT DAC/ADC	$28469-381 G$
IC8	ICA AMP TL072CP DUAL FET 1/P	$28461-3482$
IC9	ICD FFD 74LS273 OCT+EDG TR	$28462-615 \mathrm{U}$
IC10	ICA ADC ZN425E - 8BIT DAC/ADC	$28469-381 G$
IC11	ICA AMP TLO72CP DUAL FET	
IC12	ICA DAC AD7542 KN !	$28461-348 Z$
IC13	ICA AMP OP-07CP 150UV O/S DIL8	ANALOG DEVICES

ICl 4
ICA DAC AD7542 KN!
ICl 5 ICA AMP OP-07C 150 UV O/S DIL8
ANALOG DEVICES
SINGLE SOURCE
28461-374U

ICl 6
IC17
IC18

PL1
PL2
PL3
RI
R2
R3
R4
R5

R6
R7
R8
R9
R10
R11
RV CERM 5K LIN 10\%
RES MF 1K2 1/4W 2\%
RES MF 18K 1/4W 2\%
RES MF 220R 1/4W 2\%

28461-901A
28461-695U
28461-3482

23444-3592
23444-3592
ITT CANNON
24773-273A
24773-273A
24773-321L
24773-304C
24773-297M
24773-328D
24773-297M
24773-307K
24773-506P
24773-289W
24773-2915
25748-506P
24773-275H
24773-303M
24773-257W

Circuit
Mfr./Part Number reference

Unit AC09/2 - In-Out (Port control) - (continued)

R16	RES M	MF 10K 1/4W 2%	24773-297M
R17	RES M	MF $4 \mathrm{~K} 7 \quad 1 / 4 \mathrm{~W} \quad 2 \%$	24773-289W
R18	RES M	MF 220R 1/4W 2\%	24773-257W
R19	RES M	MF $1 \mathrm{~K} 1 / 4 \mathrm{~W} 2 \%$	24773-273A
R20	RES M	MF $2 \mathrm{~K} 2 \mathrm{l} / 4 \mathrm{~W} \quad 2 \%$	24773-281Y
R21	RES M	MF 10K 1/4W 2\%	24773-297M
R22	RES M	MF 10K 1/4N 2%	24773-297M
R23	RES M	MF 47 K 1/4W 2%	24773-313H
R24	RES M	MF 27K 1/4W 2%	24773-307K
R25	RES M	MF 1OK 1/4W 2%	24773-297M
R26	RES M	MF 10K 1/4W 2\%	24773-297M
R27	RES M	MF 4K7 1/4W 2%	24773-289W
R28	RES M	MF 4K7 1/4W 2\%	24773-289W
R29	RES M	MF $4 \mathrm{~K} 71 / 4 \mathrm{~W} \quad 2 \%$	24773-289W
R30	RES M	MF 4K7 1/4W 2%	24773-289W

R31	RES MF 4K7 1/4W 2\%	24773-289W
R32	RES MF 4K7 1/4W 2%	24773-289W
R33	RES MF 4 K 7 1/4W 2%	24773-289W
R34	RES MF 100R 1/4W 2%	24773-249J
R35	RES MF 150K 1/4W 2\%	24773-825V
R36	RES MF 1M 1/4W 2\%	24773-346E
R37	RES MF 100R 1/4W 2\%	24773-249J
R38	RES MF 100K 1/4W 2\%	24773-321L
R39	RES MF 100K 1/4W 2%	24773-321L
R40	RES MF 33K 1/4W 2\%	24773-309Z
R41	RES MF 10K 1/4W 2\%	24773-297M
R42	RES MF 100K 1/4W 2%	24773-321L
R43	RES MF 15K 1/4W 2\%	24773-301P
R44	RES MF 4K7 1/4W 2\%	24773-289W
R45	RES MF 4K7 1/4W 2\%	24773-289W
R46	RES MF 820R 1/4W 2\%	24773-271B
SKT	LOW PROFILE DIL 16	28488-041E
TRI	TR NSI 2N2369 15V 500M-SW	28452-197H
TR2		TEXAS TIP 120
		OR RCA 2N6387
TR3	TR NSl 2N2369 15V 500M-SW	28452-197H
TR4	TR NSI 2N2369 15V 500M-SW	28452-197H

Chap. 6
Page 16

Unit ACll - A-D system and log conversion -
14. When ordering, prefix circuic reference with ACll

Complete unit
3964-091
CAP TANT L.OUF 35V 20\%
26486-209F
26383-006C
26486-225C
25486-225C
26486-225C

26486-225C
26486-225C
26383-006C
26383-006C
26383-006C

26383-006C
26383-006C
26383-006C
26383-006C
26383-006C

26383-006C
26383-006C
26383-006C
ANALOG DEV. SINGLE SOURCE
28466-452U
28466-452U
28466-452U
28469-384W

28469-384W
28469-384W
28466-340R
28466-106H 28466-403P

28466-2072
28466-452U
28466-452U
28466-452U
3964-704
3964-703
TEXAS SN 74LS367AN
NAT.S. DM 74LS367N
28462-615U
88465-027F

28488-044N
Unit ACl2 - Signal channel -
15. When ordering, prefix circuit reference with ACl2

CAP PETP . 047 UF 250V 10\%
26582-206C
CAP CER .OOLUF 63V 20\%
26383-585M
25383-585M
26383-006C
CAP CER . 01 UF 25V 20\%
26483-225C
26486-225C
26486-219P
26486-219P
26486-225C
26486-225C
26486-230B
26383-585M
26343-477V
26343-477V
26343-477V
26383-585M
26343-482W
26383-534Y
26383-006C
DIODE ZENER BZX79C8V2.8.2V
DIODE ZENER BZX79C8V2 8.2V
DIODE ZENER BZX79C8V2 8.2V
DIODE ZENER BZX79C8V2 8.2V
MULLARD
MULLARD
MULLARD
MULLARD
28336-676J

Circuit
reference
Mfr./Part number

Unit ACl2 - Signal channel - (continued)

D7
D8
D9
D10
ICl
IC2
IC3
IC4
ICS

IC6
IC7
IC8
IC9
ICIO
IC1 2
IC14
IC15
IC1 6
RI
R2
R3
R4
R5
R6
R8
R9
R10
RII
R12
R13
R14
R15
R16
R17
R18
R19
R20
R2 1

DIODE SIL IN4148 100V
28336-676J
DIODE ZENER BZX79 12V
28372-149G
DIODE SIL 1 N4148 100V
28336-676J
28336-676J
BOURNS TRIMPOT OR
ANALOG DEVICES
28469-362R
BOURNE TRIMPOT OR
ANALOG DEVICES
28469-362R
28461-348Z

MOTOROLA
28461-3482
28462-608A
28469-362R
TEXAS

28469-362R
MOTOROLA
28462-608A
TEXAS

24773-289W
24773-249J
24773-249J
24773-325V
25748-509C

24773-279N
24773-249J
24773-249J
24773-281Y
24773-249J
24773-249J
24773-307K
25748-506P
24773-285F
24773-305R
24773-249J
24773-249J
24773-273A
24773-289W
24773-273A

Circuit
Description
Mfr./Part Number
reference

Unit ACl2 - Signal channel - (continued)

R22	RES MF LOK 1/4W 2%	24773-297M
R23	RES MF 10R 1/4W 2%	24773-297M
R24	RES MF 4K7 1/4W 2%	24773-289W
R25	RES MF 5K6 1/4W 2%	24773-291S
R26	RES MF 5K6 1/4W 2%	24773-291S
R27	RES MF 10KO 1/4W 0.5\%	24753-628N
R28	RES MF 10K0 1/4W 0.5\%	24753-628N
R29	RES MF 10K0 1/4W 0.5\%	24753-628N
R30	RES MF 10K0 1/4W 0.5\%	24753-628N
R31	RV 10K 10\%	BOURNS 3299W-1-103
		OR ALLEN BRADLEY 85W/LOK
R32	RV 10K 10\%	BOURNS 3299W-1-103
		OR ALLEN BRADLEY 85W/10K
R33	RV CERM 2K LIN . 3W 10\% FLAT	25748-505T
R34	RES MF 4K7 1/4W 2\%	24773-289W
R35	RES MF 10K 1/4W 2\%	24773-297M
R36	RES MF 10K 1/4W 2%	24773-297M
R37	RES MF 4 K 7 1/4W 2%	24773-289w
R38	RES MF 10K 1/4W 2\%	24773-297M
R39	RES MF 5K6 1/4W 2\%	24773-291S
R40	RES MF 100R 1/4W 2\%	24773-249J
R42	RES MF 22K 1/4W 2\%	24773-305R
R44	RES MF $27 \mathrm{~K} 1 / 4 \mathrm{~W} 2 \%$	24773-307K
R49	RES MF $5 \mathrm{~K} 61 / 4 \mathrm{~W} 2 \%$	24773-291S
R50	RV CERM 10K LIN . 5 W 10\%	25748-566S
R51	RES MF 22K 1/4W 2\%	24773-305R
R52	RES MF 15K 1/4W 2%	24773-301?
R53	RES MF 15K 1/4W 2%	24773-301P
R54	RES MF 1K8 1/4W 2%	24773-279N
R55	RES MF $1 \mathrm{~K} 1 / 4 \mathrm{~W} 2 \%$	24773-273A
R56	RES MF 10K 1/4W 2%	24773-297M
R57	RES MF 10K 1/4W 2\%	24773-297M
R58	RES MF 10K 1/4W 2%	24773-297M
R61	RV CERM 10K LIN .5W 10\%	25748-566S
R62	RES MF 15K 1/4W 2%	24773-301P
R63	RES MF $4 \mathrm{~K} 71 / 4 \mathrm{~W} 2 \%$	24773-297M
R64	RES MF 1K 1/4W 2%	24773-273A
R65	RES MF 100R 1/4W 2%	24773-249J
R66	RES MF 100R 1/4W 2%	24773-249J
R67	RES MF 10K 1/4W 2%	24773-297M

R70	RES MF $1 \mathrm{~K} 1 / 4 \mathrm{~N} \quad 2 \%$	24773-273A
R72	RES MF 100R 1/4W 2%	24773-249J
R73	RES MF 100R 1/4W 2%	24773-249J
SK2	CON RF SMB MALE 50 PCB ELBOW	23444-359Z
TR1	TP PSI BC307A 45V 130M-GEN	28435-227H
TR2	TR PSI BC307A 45 V 130M-GEN	28435-227H
TR4	TR NSI 2N2369 15V 500M-SW	28452-197H
TR5	TR NSI 2N2369 15V 500M-SW	28452-197H

Unit AFO1 - Keyboard -
16. When ordering, prefix circuit reference with AFOl

Complete assy.	$3964-093$
CONN. JUMP MALE EST-2.1A-10	T \& B ANSLEY
LAMP LED CQY87V180P 2.4V YEL	$28624-121 Z$
LAMP LED CQY87V180P 2.4V YEL	$28624-121 Z$

S1-S39 SW PUSH ICO 24V 10MA 23465-411B

Unit AF02 - Keyboard decoder -
17. When ordering, prefix circuit reference with AFO2

Complete unit 3964-094
Cl CAP CER 39PF 63V 5\% 26343-472N
C2 CAP CER .O1UF 25V 20\%
26383-006C
C3 CAP PETP .047UF 250V 10\%
26582-206C
C4 CAP CER .O1UF 25V 20\%
26383-006C
C5 CAP TANT 4.7UF 35V 20\%
26486-219P

| C6 | CAP TANT 4.7UF 35V 20\% | $26486-219 \mathrm{P}$ |
| :--- | :--- | :--- | :--- |
| C7 | CAP TANT 4.7UF 35V 20\% | $26486-219 \mathrm{P}$ |
| C8 | CAP TANT 4.7UF 35V 20\% | $26486-219 \mathrm{P}$ |
| C9 | CAP TANT 4.7UF 35V 20\% | $26486-219 \mathrm{P}$ |
| C10 | CAP CER .O1UF 25V 20\% | $26383-006 \mathrm{C}$ |

Circuit
Description
Mfr./Part Number
reference

Circuit
Description
Mfr./Part Number
reference

Unit AFO2 - Keyboard decoder - (continued)

| R6 | RES MF $100 \mathrm{~K} 1 / 4 \mathrm{~W} 2 \%$ | $24773-321 \mathrm{~L}$ |
| :--- | :--- | :--- | :--- |
| R7 | RES MF 1OK $1 / 4 \mathrm{~W} 2 \%$ | $24773-297 \mathrm{M}$ |
| R8 | RES MF $15 \mathrm{~K} 1 / 4 \mathrm{~W} 2 \%$ | $24773-301 \mathrm{D}$ |
| R9 | RES MF $100 \mathrm{~K} 1 / 4 \mathrm{~W} 2 \%$ | $24773-321 \mathrm{~L}$ |
| R10 | RES MF $270 \mathrm{~K} 1 / 4 \mathrm{~W} 2 \%$ | $24773-331 \mathrm{D}$ |

R11	RES MF 27OK 1/4W 2\%	$24773-331 \mathrm{D}$
R12	RES MF 10K 11/4W 2\%	$24773-297 \mathrm{M}$
R13	RES MF 15K 1/4W 2\%	$24773-301 \mathrm{P}$
R14	RES MF 56K 1/4W 2\%	$24773-315 \mathrm{U}$
R15	RES MF $100 \mathrm{~K} 1 / 4 \mathrm{~W} 2 \%$	$24773-321 \mathrm{~L}$

| R16 | RES MF 100K $1 / 4 \mathrm{~W} 2 \%$ | $24773-321 \mathrm{~L}$ |
| :--- | :--- | :--- | :--- |
| R17 | RES MF 100K $1 / 4 \mathrm{~W} 2 \%$ | $24773-321 \mathrm{~L}$ |
| R18 | RES MF 100K $1 / 4 \mathrm{~W} 2 \%$ | $24773-321 \mathrm{~L}$ |
| R19 | RES MF $100 \mathrm{~K} 1 / 4 \mathrm{~W} 2 \%$ | $24773-321 \mathrm{~L}$ |
| R20 | RES MF $100 \mathrm{~K} 1 / 4 \mathrm{~W} 2 \%$ | $24773-321 \mathrm{~L}$ |

R21 RES MF 100R 1/4W 2\% 24773-249J
R22
RES MF 100R $1 / 4 \mathrm{~W} 2$
24773-249J
R23
R24
R25
RES MF 10K $1 / 4 \mathrm{~W} \quad 2 \%$
RES MF $10 \mathrm{~K} \quad 1 / 4 \mathrm{~W} 2 \%$
RES MF 2K2 1/4W 2\%
24773-297M
24773-297M
24773-281Y

R26 RES MF 10K 1/4W 2\% 24773-297M
R27
RV CERM 10K LIN . 3W 10\% FLAT
25748-507X

SK1

SK2
CON MIN 143-105

TR1
TR2
TR3
TR4
TR NSI $2 \mathrm{~N} 236915 \mathrm{~V} 500 \mathrm{M}-\mathrm{SW}$
28452-197H
28452-197H
28452-197H
28459-023B

Unit AFO3/1 - Signal input board -
18. When ordering, prefix circuit reference with AF03/1

				Complete unit	$3964-129$
C1	CAP CER .O1UF 25V 20\%	$26383-006 \mathrm{C}$			
C2	CAP TANT .047UF 35V 20\%	$26486-207 \mathrm{~L}$			
C3	CAP TANT 4.7UF 35V 20\%	$26486-219 \mathrm{P}$			
C4	CAP TANT 4.7UF 35V 20\%	$26486-219 \mathrm{P}$			
C5	CAP TANT 4.7UF 35V 20\%	$26486-219 P$			

| C6 | CAP TANT LOUF 35V 20\% | $26486-225 \mathrm{C}$ |
| :--- | :--- | :--- | :--- |
| C7 | CAP TANT 1OUF 35V 20\% | $26486-225 \mathrm{C}$ |
| C8 | CAP TANT 1.OUF $35 \mathrm{~V} 20 \%$ | $26486-209 \mathrm{~F}$ |
| C10 | CAP CER .OLUF $50 \mathrm{~V} 20 \%$ | $26383-534 \mathrm{Y}$ |
| C11 | CAP CER .OOIUF 63V 10% | $26383-585 \mathrm{M}$ |

C12 CAP CER .OLUF 25V 20\% 26383-006C
C13 CAP CER .O1UF 25V 20\% 26383-006C
C14 CAP CER 4P7 63V .25PF 26343-461B
C101 CAP PETP . $01 \mathrm{UF} 400 \mathrm{~V} 10 \%$ 26582-232W
C102 CAP CER 100PF 63V 2\% 26343-477U

Cl03	CAP TANT 10UF 35V 20\%	$26486-225 \mathrm{C}$
C104	CAP TANT .O47UF 35V 20\%	$26486-207 \mathrm{~L}$
C105	CAP TANT 1.OUF 35V 20\%	$26486-209 \mathrm{~F}$
C106	CAP TANT 1.OUF 35V 20\%	$26486-209 \mathrm{~F}$
C109	CAP CER 100PF 63V 2\%	$26343-477 \mathrm{U}$
C110	CAP CER 100PF 63V 2\%	$26343-477 \mathrm{U}$
C111	CAP CER 56PF 63V 2\%	$26343-474 \mathrm{~J}$
C112	CAP TANT 1.OUF 35V 20\%	$26486-209 \mathrm{~F}$
C113	CAP TANT 1.OUF 35V 20\%	$26486-209 \mathrm{~F}$
C201-C213,		
and		

D1	DIODE ZEN 1N825/A 6.2V 5\%	$28371-494 \mathrm{Z}$
D2	DIODE REN BZX79 12V 5\%	$28372-149 \mathrm{G}$
D3	DIODE RECT 1N4004	$28357-028 \mathrm{~K}$
D4	DIODE RECT 1N4004	$28357-028 \mathrm{~K}$
D103	DIODE SIL 1N4148	$28336-676 \mathrm{~J}$

Chap. 6
Page 24

Circuit
Description
reference

Mfr./Part Number

Unit AFO3/1 - Signal input board - (continued)
ICl ICA MUX DG 508BP 8 INP ! 28469-361C
IC2 ICA AMP OP27GZ 28461-368T
IC3 ICD AND 4081 QUAD 2 INP B1 ! 28466-009L
IC4 ICD NAND 4011 QUAD 2 INP B! ! 28466-340R
IC5 ICA MUX CD 4052B DUAL ! RCA

IC6 ICA AMP TL 071CP FET 1/P DIL 8 28461-347A
IC7 ICA VREG MC 78LO5CP
ICl01 ICA AMP OP27GZ
MOTOROLA
28461-368T
IC201, IC2O2
and
IC301,IC302 are identical types to IC101,IC102

PL1 90° SQ PIN (WITH LOCK)
TOOL NO. 7966

R1	RES MF	1OK $1 / 4 \mathrm{~W}$	2%	
R2	RES MF	1OK $1 / 4 \mathrm{~W}$	2%	
R3	RES MF	10 K	$1 / 4 \mathrm{~W}$	2%
R4	RES MF	3 K 3	$1 / 4 \mathrm{~W}$	2%
*R5	RES MF	$422 \mathrm{~K} \quad 1 / 4 \mathrm{~W}$	0.5%	

24773-297M
24773-297M
24773-297M
24773-285F
TO SPEC 24700-003

R6	RV CERM 10K		
R7	RES MF $1 / 4 \mathrm{~W}$	0.5%	
R8	RES MF $1 / 4 \mathrm{~W}$	0.5%	
R9	RES MF $1 / 4 \mathrm{~W}$	0.5%	
R10	RES MF	7 K87	$1 / 4 \mathrm{~W}$

25748-566S
24753-624H
24753-621K
TO SPEC 24700-003
24753-591U

R11	RES MF $150 \mathrm{R} \quad 1 / 4 \mathrm{~W} \quad 2 \%$
R13	RES MF $100 \mathrm{~K} \quad 1 / 4 \mathrm{~W} \quad 2 \%$
R14	RES MF $100 \mathrm{~K} \quad 1 / 4 \mathrm{~W} \quad 2 \%$
R1S	RES MF $1 \mathrm{~K} 1 / 4 \mathrm{~W} 2 \%$
R16	RES MF $10 \mathrm{~K} \quad 1 / 4 \mathrm{~W} \quad 2 \%$

24773-253F
24773-321L
24773-321L
24773-273A
24773-297M

| R17 | RES MF 27K 1/4W 2\% | $24773-307 \mathrm{~K}$ |
| :--- | :--- | :--- | :--- |
| R18 | RES MF 1OK 1/4W 2\% | $24773-297 \mathrm{M}$ |
| R19 | RES MF 1OR 1/4W 2\% | $24773-225 \mathrm{~W}$ |
| R101 | RES MF 39K 1/4W 2% | $24773-31 \mathrm{~A}$ |
| R102 | RES MF 15R 1/4W 2% | $24773-229 \mathrm{X}$ |

R103 RES MF 15R 1/4W 2\% 24773-229X
*R104 RES MF 150K 1/4W 2\%
24773-325V
R105 RV 2OK LIN 1/2W 10\%
25748-565V
R106 RES MF 330R 1/4W 2\%
24773-261D
R107 RES MF 39R 1/4W 2\%

Circuit
Description
reference

Unit AF03/1 - Signal input board - (continued)

R108	RES MF 2K2 $1 / 4 \mathrm{~W}$	2%	$24773-281 \mathrm{Y}$	
R109	RES MF 10 K	$1 / 4 \mathrm{~W}$	2%	$24773-297 \mathrm{M}$
R110	RES MF 39K $1 / 4 \mathrm{~W}$	2%	$24773-311 \mathrm{~A}$	
R112	RES MF $47 \mathrm{~K} 1 / 4 \mathrm{~W}$	2%	$24773-313 \mathrm{H}$	
R115	RES MF $47 \mathrm{~K} 1 / 4 \mathrm{~W}$	2%	$24773-313 \mathrm{H}$	

R116 RES MF 10K 1/4W 2\% 24773-297M
R117 RES MF 2K7 1/4W 2\% 24773-283L
R118 RES MF 1K 1/4W 2\%
24773-273A
25748-562J
R119 RV $2 \mathrm{~K} 1 / 2 \mathrm{~W} \quad 10 \%$
24773-273A

R125 RES MF 1K 1/4W 2\% 24773-273A
R126
R127
R1 28
RES MF 100K 1/4W 2\%
24773-321L
24773-319V
24773-295P
R201-R228
and
R301-R328 are identical values to R101-R128.

SK1 CON RF SMB MALE 50』 PCB ELBOW 23444-3592
SOCKET PW SPRING
28488-009N
SK LOW PROFILE DIL 16

TR1 TR NSI 2N2369 15V 500M-SW 28452-197H
TR101
TRI 02
TR NJF J310!
TR NJF J310!
TR103 TR NSI BC414
28459-028E
28459-028E
MOTOROLA
TR201-TR203
and
TR301-TR303 are identical types to TR101-TR103.

Unit AF04 - Intensity control -
19. When ordering, prefix circuit reference with AF04

	Complete unit	3964-021
R1	RES MF 75R 1/4W 2%	24773-246Y
R2	RES MF 470R 1/4W 2\%	24773-265M
R3	RES MF 1K5 1/4W 2%	24773-277U
R4	RES MF IKS 1/4W 2\%	24773-277U
R5	RES MF 1K5 1/4W 2\%	24773-277U

Circuit
reference Description Mfr./Part Number
Unit AF04 - Intensity control - (continued)

| R6 | RV 1 K | BOURNS 82C1A-E28-A10 |
| :--- | :--- | :--- | :--- |
| R7 | RV 1 K | BOURNS 82C1A-E28-A10 |
| R8 | RV 1 K | BOURNS 82C1A-E28-A10 |
| R9 | RV 1 K | BOURNS 82C1A-E28-A10 |

```
Unit AMO1 - Part of General assembly -
20. When ordering, prefix circuit reference with AMOl
```

Complete unit
SKI-SKl2
SK13
SK14
SK15
SK17

Unit ARO1 - $\pm 15 \mathrm{~V}$ Regulator -
21. When ordering, prefix circuit reference with ARO1

Complete board
3964-097
26415-842Z
26383-006C
26486-219P
26415-8422
26383-0060

26486-219p

D
DIODE BRIDGE 2KBB2OR 200V 1.9
DIODE RECT $1 N 4004$ 400V
DIODE RECT $1 N 4004$ 400V
DIODE BRIDGE 2KBB2OR 200V
DIODE RECT 1 N4004 400V

DIODE RECT 1 N4004 400V
28357-028K

28461-709S
28461-735N

Unit AR02 - $\pm 15 \mathrm{~V}$ Regulator -
22. When ordering, prefix circuit reference with ARO2

Complete board	$3964-077$
CAP ELEC 47OUF 63V 20\% AX	$26415-842 \mathrm{Z}$
CAP CER .O1UF 25 V 20\% DISC	$26383-006 \mathrm{C}$
CAP TANT 4.7UF 35V 20\% BEAD	$26486-219 \mathrm{P}$
CAP ELEC 470UF 63V 20\% AX	$26415-842 Z$
CAP CER . O1UF $25 \mathrm{~V} 20 \%$ DISC	$26383-006 \mathrm{C}$

C6 CAP TANT 4.7UF 35V 2\% BEAD 26486-219P

| IC1 | ICA | VREG + | 7815 | 15 V | IA | TO220 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 28461-709 \mathrm{~S}$

Unit AR03 - +12V Regulator -
23. When ordering, prefix circuit reference with AR03

Cl
C2
C3

D1 DIODE RECT 1 N4004 400V
D2 DIODE RECT $1 N 4004$ 400V

3964-098
26486-225C
26486-219p
26486-219P

28357-028K
28357-028K

IC2 ICA(MOUNTED ON H.S.1)VREG+LM 317K PROG LA5 T)3 28461-728H

R1	$1 \mathrm{K8} 1 / 4 \mathrm{~W} 2 \%$	$24773-279 \mathrm{~N}$
R2	$220 \mathrm{R} 1 / 4 \mathrm{~W} 2 \%$	$24773-257 \mathrm{~W}$

Chap. 6
Page 28

Circuit reference	Description	Mfr./Part Number
Unit ARO4/1 - Ramp circuit -		
24. When ordering, prefix circuit reference with AR04/1		
	Complete board	3964-126
Cl	CAP TANT 10UF 35V 20\% BEAD	26486-225C
C2	CAP TANT 1.OUF 35V 20\% BEAD	26486-209F
C3	CAP TANT 10UF 35V 20\% BEAD	26486-225C
C4	CAP PETP . 1 UF 100V 10\% RAD	26582-211B
C5	CAP PETP . LUF 100V 10\% RAD	26582-211B
IC1	ICA AMP TLO72CP DUAL FET $1 / \mathrm{P}$	28461-3482
IC2	ICA 79L12	MOTOROLA MC79L12 CP-12V-OA OR
	ICA AMP TL072CP DUAL FET $1 / \mathrm{P}$	NAT.S LM340 LAZ-12 28461-3482
L1	INDUCTOR (SPECIAL) $65 \mu \mathrm{H}$ PARALLEL WITH 1 K	3964/328
L2	INDUCTOR (SPECIAL) $65 \mu \mathrm{H}$ PARALLEL WITH 1 K	3964/328
PLI	CON 3-WAY FRICTION LOCK	23435-870Y
R1	RES MF LOK 1/4W 2%	24773-297M
R2	RES MF 3K3 1/4W 2%	24773-285F
R3	RES MF 3K9 1/4W 2\%	24773-287V
R4	RV CERM 1 K LIN 10%	BOURNS $3299 \mathrm{~W}-1-102$
		OR SPECTROL $52 \mathrm{~W} / 1 \mathrm{~K}$
RS	RV CERM 5K LIN 10\%	BOURNS 3299W-1-502
		OR SPECTROL $52 \mathrm{~W} / 5 \mathrm{~K}$
R6	RV CERM 5K LIN 10\%	BOURNS 3299W-1-502
		OR SPECTROL 52W/5K
R7	RES MF 18K 1/4W 2\%	24773-303M
R8	RES MF 220K 1/4W 2%	24773-329T
R9	RES MF 20K 1/4W 2%	24773-304C
R10	RES MF 100K 1/4W 2\%	24773-321L
R11	RES MF 560R 1/4W 2%	24773-267R
R12	RES MF 1K5 1/4W 2%	24773-277U
R13	RES MF 100R 1/4W 2\%	24773-249J
R14	RES MF 100R 1/4W 2\%	24773-249.J
SK1	CON RF SMB 50 PCB ST	23444-334Y
SK2	CON RF SMB 50 PCB ST	23444-334Y

[^1]

Unit AR06 - Power supply chassis assy. -
26. When ordering, prefix circuit reference with AR06

| C7 | CAP ELEC 10000UF $40 \mathrm{~V} 10 \%$ TAGS | $26426-096 \mathrm{~B}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| C8 | CAP ELEC 10000 UF 25V 10\% TAGS | $26426-095 \mathrm{R}$ |
| C9 | CAP ELEC 10000 UF 25V TAGS | $26426-095 \mathrm{R}$ |
| C10 | CAP ELEC $10000 \mathrm{UF} 25 \mathrm{~V} 10 \%$ TAGS | $26426-095 \mathrm{R}$ |

$\begin{array}{ll}\text { FS1 } & \text { FUSE TIME LAG 600mA } \\ \text { FS2 } & \text { FUSE TIME LAG 600mA }\end{array}$ FARNELL FOR 115V APPLICATION PT No. TDC 123 1.25A FUSE HOLDER (FOR FSI \& FS2) $20 \times 50 \mathrm{~mm}$ 23416-192R

SK1 CONNECTOR/MAINS FILTER MALE 3 FXD RF FILTER 23423-150L

T1
Chap. 6
Page 30
Circuit
referenc

Mfr./Part Number
reference

Circuit
reference
Unit ATOl/1 - Part of CRT - (continued)

| C7 | CAP CER 33P 63V 5\% | $26343-471 \mathrm{Y}$ |
| :--- | :--- | :--- | :--- |
| C8 | CAP ELEC 4UF 35V 20\% | $26421-108 \mathrm{~A}$ |
| C9 | CAP CER .1UF 50V 20\% | $26383-534 \mathrm{Y}$ |
| C10 | CAP ELEC 2200U 16V 20\% | $26421-132 \mathrm{~T}$ |
| C11 | CAP CER 1000P 63V 10% | $26383-585 \mathrm{M}$ |

C12	CAP ELEC 100UF 35V 20\%	$26421-122 \mathrm{~J}$
C13	CAP PETP .1UF 63V 10%	$26582-429 \mathrm{~F}$
C14	CAP CER 470P 63V 10%	$26383-582 \mathrm{~T}$
C15	CAP CER 470P 63V 10%	$26383-582 \mathrm{~T}$
C16	CAP PETP .1UF 63V 10%	$26582-429 \mathrm{~F}$

| C17 | CAP PETP .01UF 63V 10% | $26582-426 \mathrm{~N}$ |
| :--- | :--- | :--- | :--- |
| C18 | CAP CER 1000P 63V 10% | $26383-585 \mathrm{M}$ |
| C19 | CAP CER 1000P 63V 10% | $26383-585 \mathrm{M}$ |
| C20 | CAP ELEC 4U7 35V 20% | $26421-102 \mathrm{~A}$ |
| C21 | CAP PETP .OIUF 63V 10% | $26582-426 \mathrm{~N}$ |

C22	CAP CER 1000P 63V 10%	$26383-585 \mathrm{M}$
C23	CAP PETP .47UF 63V 10%	$26582-427 \mathrm{~L}$
C24	CAP PP .012UF 630V 10%	$26582-490 \mathrm{E}$
C25	CAP ELEC 100UF 35V 20%	$26421-122 \mathrm{~J}$
C26	CAP ELEC 33UF 250V $-10+50 \%$	$26421-134 \mathrm{X}$

| C27 | CAP ELEC 1UF 63V 20\% | $26423-201 \mathrm{~V}$ |
| :--- | :--- | :--- | :--- | :--- |
| C28 | CAP PETP .1UF 630V 10% | $26582-228 \mathrm{~S}$ |
| C29 | CAP PETP .OO2UF $250 \mathrm{~V} 10 \%$ | $26582-204 \mathrm{X}$ |
| C30 | CAP PETP 3.3UF $100 \mathrm{~V} 10 \%$ | $26582-229 \mathrm{~W}$ |
| C31 | CAP PETP .1UF 250V 10% | $26582-208 \mathrm{~B}$ |

D1	DIODE RECT 1 N4004 400V	28357-028K
D2	DIODE SIL 1N414875V	28336-676J
D3	DIODE SIL $1 N 414875 \mathrm{~V}$	28336-676J
D4	DIODE SIL 1 N4148 75V	28336-676J
D5	Diode RECT MR854 400V	28357-016W
D6	DIODE RECT BYW95C 600V	28358-726P
D7	DIODE RECT BA159 1000V	28359-103B
D8	DIODE RECT BYW95C 600V	28358-726P
D9	DIODE RECT BA159 1000V	28359-103B
D10	DIODE RECT BY584 1800V	28359-105A

ICl

IC2
VERT DEFLECTION SYSTEM TDA il70S
28231-408A
ICD MONO 555 TIMER
23468-304P
ICD MONO 555 TIMER
28468-304P

Circuit
Description
Mfr./Part Number
reference

Unit ATO2 - Part of CRT -
31. When ordering, prefix circuit reference with ATO2

Complete board
Cl7 CAP CER 33pF 100V 20\%

R4 RES 330R 1/2W 10\%
R5 RES $22 \mathrm{~K} \quad 1 / 2 \mathrm{~W} \quad 10 \%$

R6
RES 22K 1/2W 10\%
RES 1K5 1/2W 10\%

3964-066
MULLARD 632 SERIES
PART NO. 63234339

ALLEN BRADLEY TYPE EB OR ERIE TYPE 00026/012
ALLEN BRADLEY TYPE EB OR ERIE TYPE 00026/012

ALLEN BRADLEY TYPE EB OR ERIE TYPE 00026/012
ALLEN BRADLEY TYPE EB

Unit GPIB - Interface module - (Optional accessory)
32. When ordering, prefix circuit reference with GPIB interface

Complete GPIB module (Option OOl)
PCB assy.
Switch, p.c.b. assy.
Cable assy.
CAP CER .O1UF 25V 20\%
CAP CER .OlUF 25V 20\%
CAP CER .OIUF 25V 20\%
CAP CER .OLUF 25V 20\%
CAP CER .OIUF 25V 20\%
CAP CER .OIUF 25V 20\%
CAP CER .OLUF 25V 20\%
CAP TANT 47UF 6V 20\%
24-WAY RIBBON FLAT
20-WAY PLUG SOLDER/TRANS
20-WAY SOCKET IDC
ICD MP SUP 8291A GPIB TALK/LIS !
ICD BUFF 3448 QUAD GPIB TXTX 3 S
ICD BUFF 3448 QUAD GPIB TXTX 3 S
ICD BUFF 3448 QUAD GPIB TXTX 3S
ICD BUFF 3448 QUAD GPIB TXTX 3S
ICD NAND 74LSOO QUAD $21 N P$
74LS367

3964-650
3964-301
3964-302
3964-601

$$
\begin{gathered}
26383-006 \mathrm{C} \\
\\
26383-006 \mathrm{C} \\
26383-006 \mathrm{C} \\
26486-232 \mathrm{~A} \\
\\
15360-893 \mathrm{~A} \\
23435-860 \mathrm{~B} \\
\text { ITT CANNON GO \& D } \\
029-8504-000
\end{gathered}
$$

28467-014C
28469-190R 28469-190R 28469-190R 28469-190R 28466-345H
TEXAS SNN74LS367AN OR NAT.S DM74LS367N

R1-R6
RES NET 4K7 1/4W 2\%
24681-608D
Chap. 6
Page 34

Unit GPIB - Interface module - (Optional accessory) (continued)

R7	RES MF 4K7 $1 / 4 \mathrm{~W} 2 \%$	$24773-289 \mathrm{~W}$
R8	RES MF 4K7 1/4W 2\%	$24773-289 \mathrm{~W}$
SW	6-WAY DIL	$23465-897 \mathrm{~W}$

Chap. 6

MECBANICAL COMPONENTS

33. Order without prefix

Fig. 1

Item

Description

Front panel keyboard detail	3964-188
Front panel c.r.t. bracket assy.	3964-152
CRT tinted filter	3964-191
Front trim (upper)	3964-197
Front trim (lower)	3964-198
Front trim infill	3964-199
Side panel assy.	3964-158
Clamp card retainer assy.	3964-009
Rear panel assy.	3964-174
Rear trim	3964-200
Top cover	3964-150
Voltage selector plate	3964-156
End cap (two parts)	3964-103
End cap (two parts)	3964-104
Side trim infill	3964-159
Side rail	3964-158
Side handle cover moulding	3964-102
Handle bush	3964-111
Handle cover	3964-100
Handle spring (2 off)	3964-099
Botton cover (complete with tilt stand and feet)	3964-178
Rear foot	37590-224R
Rear foot stud	37590-223C
Front foot	37590-253X
Tilt stand	37590-254M
Screw c'sk posidrive chrome (M4 x 16 LG) MS	
Screw cup washer	21171-550W
Front handle infill	3964-203
Front handle	3964-241
Handle moulding	3964-106
Knob assy. 20 mm	41149-061W
Knob assy cap (stone grey)	37590-281W
Intensity control (AF04) assy.	3964-023
AMO1 card frame assy.	3964-011
Card guide	3964-246
Front card bracket assy.	3964-164
Rear card bracket assy.	3964-165
Card frame bracket assy.	3964-172
Knob assy. 10.5 dia. $\times 4 \mathrm{~mm}$ (dark brown)	41149-037B
Knob assy. cap (stone grey)	37590-242F

Chapter 7

SERVICING DIAGRAMS

CONTENTS

Para.
1 Circuit notes
2 Component values
3

Fig.	Circuit No.	Unit	Title	Page
la	3964/051	ACO 1	Component layout and edge connector connections	4
1	3964/901	ACO1	Tlming circuit ...	5
2 a	3964/052	ACO2	Component layout and edge connector	
2a	3964/053	AC03	connections	- 6
2	3964/902	ACO2	Line generator A	7
2	3964/903	ACO3	Line generator B	
3 a	3964/139	AC04/1	Component layout and edge connector connections	8
3	3964/929	AC04/1	Video circuit (graticule) ...	9
4 a	3964/055	AC05	Component layout and edge connector connections	10
4	3964/905	AC05	Alpha generator	11
5 a	3964/078	AC18	Component layout and edge connector connections	12
5	3964/923	AC18	Microprocessor	13
$6 a$	3964/135	AC09/2	Component layout and edge connector connections 14
6	3964/927	AC09/2	In-out (Port control)	- 15

CIRCUIT NOTES

Component values

1. Resistors : Code letter $R=o h m s, k=k i l o h m s ~\left(10^{3}\right), ~ M=m e g o h m s ~\left(10^{6}\right)$.

Capacitors : Code letter m=milifarads (10^{-3}), $\mu=$ microfarads (10^{-6}), n=nanofarads ($10-9$), p=picofarads (100^{12}).
Inductors : Code letter H=henrys, m=millihenrys (10-3),
μ microhenrys (100^{6}), n=nanohenrys (100^{-9}).
SIC : Value selected during test, nominal value shown.
2. Components are marked normally with two, three or four fjgures according to the accuracy limit $\pm 10 \%, \pm 1 \%$ or $\pm 0.1 \%$. The code letter used indicates the multiplier and replaces the decimal point. Because a marking $4 m 7$ could be interpreted as milliohms, millifarads or millihenrys, all values are placed near to its related symbol.
3. Symbols are based on the provisions of BS 3939 with the following additions :

\triangle Warning, see Notes and Cautions
TP1 9
Edge connector (board contact Al4)

Test point

(ACO1)

3964/923, Iss. 2

3964/911, Iss. 1

Fig. 7
Chap. 7 Page 17

Fig. 8a Component layout and edge connector connections, AC12

3964/912, Iss. 3

May. 87 (Am. 4)

AFOO
Fig. 9a Keyboard layout and key identification lines, AFO1

3964/913, Iss. 2

Fig. 11
Fig. 11 Signal input board, AF03/l

THIS
 PAGE
 LEFT
 BLANK

SCANS
 By
 Artek Media

3964/916, Iss. 3

Fig. 13
Fig. 13 Power supply unit, AR06

Fig. 14
Fig. 14 CRT, AT01/1, AT02

3964/925, Iss. 1

Fig. 15

AM01

Fig. 16a Printed circuit connections, AMO1

Fig. 17a Interface component layout, GPIB

3964/921, Iss. 1

[^0]: ! Reset error flag
 ! Place brightline

[^1]: Chap. 6
 Page 29

